首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Reaction of a group of N-(2′-hydroxyphenyl)benzaldimines, derived from 2-aminophenol and five para-substituted benzaldehydes (the para substituents are OCH3, CH3, H, Cl and NO2), with [Rh(PPh3)3Cl] in refluxing toluene in the presence of a base (NEt3) afforded a family of organometallic complexes of rhodium(III). The crystal structure of one complex has been determined by X-ray crystallography. In these complexes the benzaldimine ligands are coordinated to the metal center, via dissociation of the phenolic proton and the phenyl proton at the ortho position of the phenyl ring in the imine fragment, as dianionic tridentate C,N,O-donors, and the two PPh3 ligands are trans. The complexes are diamagnetic (low-spin d6, S = 0) and show intense MLCT transitions in the visible region. Cyclic voltammetry shows a Rh(III)Rh(IV) oxidation within 0.63-0.93 V vs SCE followed by an oxidation of the coordinated benzaldimine ligand. A reduction of the coordinated benzaldimine is also observed within −0.96 to −1.04 V vs SCE. Potential of the Rh(III)Rh(IV) oxidation is found to be sensitive to the nature of the para-substituent.  相似文献   

2.
The ligands (HL1, HL2 and HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in chloroform gave the adducts [ReX(CO)3(HL)] (1a X = Cl, R = H; 1a′ X = Br, R = H; 1b X = Cl, R = CH3; 1b′ X = Br, R = CH3; 1c X = Cl, R = Ph; 1c′ X = Br, R = Ph) in good yield. All the compounds have been characterized by elemental analysis, mass spectrometry (FAB), IR and 1H NMR spectroscopic methods, and the structures of the ligands have been elucidated by X-ray diffraction. In the case of HL1, we have tried the reaction with [ReX(CO)5] (X = Br, Cl) in toluene and we proved the formation of the adduct also by this way by the isolation of single crystals of 1a′ · ½C7H8.  相似文献   

3.
The series of complexes [XRu(CO)(L-L)(L′)2][PF6] (X = H, TFA, Cl; L-L = 2,2′-bipyridyl, 1,10-phenanthroline, 5-amino-1,10-phenanthroline and 4,4′-dicarboxylic-2,2′-bipyridyl; L′2 = 2PPh3, Ph2PC2H4PPh2, Ph2PCHCHPPh2) have been synthesized from the starting complex K[Ru(CO)3(TFA)3] (TFA = CF3CO2) by first reacting with the phosphine ligand, followed by reaction with the L-L and anion exchange with NaPF6. In the case of L-L = phenanthroline and L′2 = 2PPh3, the neutral complex Ru(Ph3P)(CO)(1,10-phenanthroline)(TFA)2 is also obtained and its solid state structure is reported. Solid state structures are also reported for the cationic complexes where L-L = phenanthroline, L2 = 2PPh3 and X = Cl and for L-L = 2,2′-bipyridyl, L2 = 2PPh3 and X = H. All the complexes were characterized in solution by a combination of 1H and 31P NMR, IR, mass spectrometry and elemental analyses. The purpose of the project was to synthesize a series of complexes that exhibit a range of excited-state lifetimes and that have large Stokes shifts, high quantum yields and high intrinsic polarizations associated with their metal-to-ligand charge-transfer (MLCT) emissions. To a large degree these goals have been realized in that excited-state lifetimes in the range of 100 ns to over 1 μs are observed. The lifetimes are sensitive to both solvent and the presence of oxygen. The measured quantum yields and intrinsic anisotropies are higher than for previously reported Ru(II) complexes. Interestingly, the neutral complex with one phosphine ligand shows no MLCT emission. Under the conditions of synthesis some of the initially formed complexes with X = TFA are converted to the corresponding hydrides or in the presence of chlorinated solvents to the corresponding chlorides, testifying to the lability of the TFA Ligand. The compounds show multiple reduction potentials which are chemically and electrochemically reversible in a few cases as examined by cyclic voltammetry. The relationships between the observed photophysical properties of the complexes and the nature of the ligands on the Ru(II) is discussed.  相似文献   

4.
Novel heteroscorpionate-containing tin and organotin(IV) complexes, [SnRnX3 − n(L)], R = Me, Bun, Ph, or cy; X = Cl, Br or I, n = 0, 1, 2 or 3; L = bis(pyrazol-1-yl)acetate (bpza) or bis(3,5-dimethylpyrazol-1-yl)acetate (bdmpza), have been synthesized and characterized by spectral (IR, 1H, 13C and 119Sn NMR, 119mSn Mössbauer) and analytical data. In [SnI3(bdmpza)], the ligand is fac-N,N′,O-tridentate, the three iodine atoms thus also fac about the six-coordinate tin(IV) atom. Neutral bpzaH reacts with BunSnCl3, PhSnCl3 and SnCl4 in Et2O in the absence of base, yielding 1:1 adducts [XSnCl3(bpzaH)] (X = R or Cl).  相似文献   

5.
The use of succinamic acid (H2sucm)/N,N′-chelate (2,2′-bipyridine, bpy; 4,4′-dimethyl-2,2′-bipyridine, dmbpy; 1,10-phenanthroline, phen) ‘ligand blends’ in CuX2·yH2O (X = NO3, y = 3; X = Cl, y = 0) chemistry has yielded the new complexes [Cu2(Hsucm)3(bpy)2](NO3)·0.5MeOH (1·0.5MeOH), [Cu2(Hsucm)(OH)Cl(bpy)2](OH)·3.6H2O (5·3.6H2O) and [Cu2(Hsucm)2Cl2(phen)2] (6). The succinamate(−1) ion behaves as a carboxylate ligand and exists in two different coordination modes in the structures of the above complexes, i.e., the common syn, syn μ2OO′ in 1, 5 and 6, and the μ22OO′ in 1. The primary amide group of Hsucm remains uncoordinated and participates in intermolecular hydrogen bonding interactions leading to 1D, 2D and 3D networks. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the Hsucm ligands.  相似文献   

6.
We report a combined experimental and computational study of new rhenium tricarbonyl complexes based on the bidentate heterocyclic N-N ligands 2-(4-methylpyridin-2-yl)benzo[d]-X-azole (X = N-CH3, O, or S) and 2-(benzo[d]-X-azol-2-yl)-4-methylquinoline (X = N-CH3, O, or S). Two sets of complexes are reported. Chloro complexes, described by the general formula Re(CO)3[2-(4-methylpyridin-2-yl)benzo[d]-X-azole]Cl (X = N-CH3, 1; X = O, 2; X = S, 3) and Re(CO)3[2-(benzo[d]-X-azol-2-yl)-4-methylquinoline]Cl (X = N-CH3, 4; X = O, 5; X = S, 6) were synthesized heating at reflux Re(CO)5Cl with the appropriate N-N ligand in toluene. The corresponding pyridine set {Re(CO)3[2-(4-methylpyridin-2-yl)benzo-X-azole]py}PF6 (X = N-CH3, 7; X = O, 8; X = S, 9) and {Re(CO)3[2-(benzo[d]-X-azol-2-yl)-4-methylquinoline]py}PF6 (X = N-CH3, 10; X = O, 11; X = S, 12) was synthesized by halide abstraction with silver nitrate of 1-6 followed by heating in pyridine and isolated as their hexafluorophosphate salts. All complexes have been fully characterized by IR, NMR, electrochemical techniques and luminescence. The crystal structures of 1 and 7 were obtained by X-ray diffraction. DFT and time-dependent (TD) DFT calculations were carried out for investigating the effect of the organic ligand on the optical properties and electronic structure of the reported complexes.  相似文献   

7.
The reaction of Ni(OAc)2, NiX2 (X = Cl, Br) or CoCl2 with the proligand 2-amino-2-methyl-1,3-propanediol (ampdH2) affords a new family of tetranuclear complexes. The syntheses of [Ni4(OAc)4(ampdH)4] (1) and [M4X4(ampdH)4] (M = Ni, X = Cl, 2; M = Ni, X = Br, 3; M = Co, X = Cl, 4) are reported, together with the single crystal X-ray structures of 1, 2 and 4 and the magnetochemical characterization of 1, 3 and 4. Each member of this family of complexes displays a low symmetry structure that incorporates a {M4O4} core unit based on a distorted cubane. Magnetic measurements reveal ferromagnetic exchange interactions for 1, 3 and 4. These give rise to S = 4 ground state spins for the tetranuclear Ni complexes and an anisotropic effective S′ = 2 ground state for the Co complex.  相似文献   

8.
Rhenium(I) tricarbonyl complexes with bispyridine ligands bearing sulfur-rich pendant, Re(CO)3(Medpydt)X (Medpydt = dimethyl 2-(di(2-pyridyl)methylene)-1,3-dithiole-4,5-dicarboxylate; X = Cl, 1; X = Br, 2) and Re(CO)3(MebpyTTF)X (MebpyTTF = 4,5-bis(methyloxycabonyl)-4′,5′-(4′-methyl-2,2′-dipyrid-4-ylethylenedithio)-tetrathiafulvalene; X = Cl, 5; X = Br, 6), were prepared from the reactions between Re(CO)5X (X = Cl, Br) and Medpydt or MebpyTTF, respectively. Hydrolysis of the above complexes afforded the analogues with carboxylate derivatives, Re(CO)3(H2dpydt)X (X = Cl, 3; X = Br, 4) and Re(CO)3(H2bpyTTF)X (X = Cl, 7; X = Br, 8). The crystal structures for complexes 1 · 2H2O, 5 and 6 were determined using X-ray single crystal diffraction. UV-Vis absorption spectra of the rhenium complexes show the intraligand and MLCT transitions. Electrochemical behaviors of all new compounds were studied with cyclic voltammetry. Upon irradiation, complexes 3-6 exhibit blue to red emissions in fluid solutions at the room temperature. The performance of complexes 3, 4, 7 and 8 as photosensitizers for anatase TiO2 solar cells was preliminarily investigated as well.  相似文献   

9.
A mononuclear ruthenium complex [Ru(bpy)2(bpp)](PF6) (1) and its halogenated and nitro derivatives [Ru(bpy)2(Xbpp)](PF6) (bpy = 2,2′-bipyridine; bpp = 3,5-bis(2-pyridyl)pyrazole; X = Cl, 2; X = Br, 3; X = I, 4; X = NO2, 5) have been synthesized and characterized by 1H NMR, 13C NMR, HRMS, elemental analysis. Complexes 25 have been further confirmed by X-ray diffraction. Their UV–Vis and emission spectroscopies, electrochemical measurements and acid–base properties are described. The results presented here reveal that the introduction of Cl, Br, I and NO2 groups to the coordinated bpp ligand makes the absorption and emission maxima of the parent complex 1 blue-shifted, the oxidation potential of the RuII/RuIII couple increased and the pKa value decreased obviously. In addition, significant quenching of the emission by these groups is also observed.  相似文献   

10.
Reaction of 1-(2′-pyridylazo)-2-naphthol (Hpan) with [Ru(dmso)4Cl2] (dmso = dimethylsulfoxide), [Ru(trpy)Cl3] (trpy = 2,2′,2″-terpyridine), [Ru(bpy)Cl3] (bpy = 2,2′-bipyridine) and [Ru(PPh3)3Cl2] in refluxing ethanol in the presence of a base (NEt3) affords, respectively, the [Ru(pan)2], [Ru(trpy)(pan)]+ (isolated as perchlorate salt), [Ru(bpy)(pan)Cl] and [Ru(PPh3)2(pan)Cl] complexes. Structures of these four complexes have been determined by X-ray crystallography. In each of these complexes, the pan ligand is coordinated to the metal center as a monoanionic tridentate N,N,O-donor. Reaction of the [Ru(bpy)(pan)Cl] complex with pyridine (py) and 4-picoline (pic) in the presence of silver ion has yielded the [Ru(bpy)(pan)(py)]+ and [Ru(bpy)(pan)(pic)]+ complexes (isolated as perchlorate salts), respectively. All the complexes are diamagnetic (low-spin d6, S = 0) and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on all the complexes shows a Ru(II)–Ru(III) oxidation on the positive side of SCE. Except in the [Ru(pan)2] complex, a second oxidative response has been observed in the other five complexes. Reductions of the coordinated ligands have also been observed on the negative side of SCE. The [Ru(trpy)(pan)]ClO4, [Ru(bpy)(pan)(py)]ClO4 and [Ru(bpy)(pan)(pic)]ClO4 complexes have been observed to bind to DNA, but they have not been able to cleave super-coiled DNA on UV irradiation.  相似文献   

11.
Reactions of copper(I) halides with racemic 2,2′-bis(diphenylphosphano)-1,1′-binaphthyl (rac-binap) in 1:1 molar ratio afforded mononuclear complexes of the type [CuX(rac-binap)] (X = Cl, Br, I) which, on further treatment with 1 equiv. of pyridine-2-thione (py2SH), pyrimidine-2-thione (pymtH) or 4,6-dimethyl-pyrimidine-2-thione (dmpymtH) gave rise to the formation of mixed-ligand complexes of the formula [CuX(rac-binap)(thione)]. The molecular structures of [CuBr(rac-binap)(py2SH)] · 2CH2Cl2, [CuBr(rac-binap)(py2SH)] · CH2Cl2 and [CuBr(rac-binap)(dmpymtH)] · CH2Cl2 have been established by single-crystal X-ray diffraction. Each of the complexes features a distorted tetrahedral copper(I) center with the phosphane acting in a chelating fashion. The complexes are strongly luminescent in the solid state at ambient temperature. Unusually, the [CuBr(rac-binap)(py2SH)] · 2CH2Cl2 molecules crystallise in a chiral space group with independent S- and R-enantiomers in the asymmetric unit.  相似文献   

12.
The [ReOX2(hbt)(EPh3)] (X = Cl, Br; E = As, P) chelates have been prepared in the reactions of [ReOX3(EPh3)2] complexes (X = Cl, Br; E = P, As) with 2-(2′-hydroxyphenyl)-2-benzothiazole (hbtH) in acetone. From the reactions of [ReOX3(PPh3)2] with hbtH two kind of crystals [ReOX2(hbt)(PPh3)] · MeCN and [ReOX2(hbt)(PPh3)] with different arrangement of halide ions (cis and trans) were isolated, whereas the [ReOX3(AsPh3)2] oxocompounds react with hbtH to give only cis-halide isomers. The complexes were structurally and spectroscopically characterised. The electronic structures of both [ReOBr2(hbt)(PPh3)] isomers have been calculated with the density functional theory (DFT) method. The TDDFT/PCM calculations have been employed to produce a hundred of singlet excited-states starting from the ground-state geometry optimized in the gas phase of cis- and trans-halide isomers of [ReOBr2(hbt)(PPh3)] and the UV–Vis spectra of these complexes have been discussed on this basis.  相似文献   

13.
The early-late heterometallic complexes [TiCp((OCH2)2Py)(μ-O)M(COD)] (M = Rh, Ir) behave as four-electron donor ligands yielding the polynuclear cationic complexes [TiCp(OCH2)2 Py(μ-O){M(COD)}2]OTf (M = Rh (1), Ir (2)). The molecular structure of complex 1 has been established through an X-ray diffraction study.  相似文献   

14.
Reactions of bis(pyridin-2-yl)ketone with tin tetrahalides, SnX4 (X = Cl or Br), or organotin trichlorides, RSnCl3 (R = Ph, Bu or CH2CH2CO2Me), in ROH (R = Me or Et) readily produces RObis(pyridin-2-yl)methanolato)tin complexes, [5: RO(py)2C(OSnX3)] (5: R,X = Me,Cl; Et,Cl; Et,Br) or [6: MeO(py)2C(OSnCl2R)] (R = Ph, Bu, CH2CH2CO2Me). In addition, halide exchange reaction between SnI4 and (5: R,X = Me,Cl) occurred to give (5: R,X = Me,I). The crystal structures of six tin(IV) derivatives indicated, in all cases, a monoanionic tridentate ligand, [RO(py)2C(O)-N,O,N], arranged in a fac manner about a distorted octahedral tin atom. The Sn–O and Sn–N bonds lengths do not show much variation amongst the six complexes despite the differences in the other ligands at tin.  相似文献   

15.
A series of Ru(II) and Ru(III) complexes of the types [RuX(CO)(EPh3)2L] (X = H, E = P; X = Cl, E = P or As) and [RuX2(EPh3)2L] (X = Cl, E = P or As; X = Br, E = As, L = monoanion of dehydroacetic acid) have been synthesized in order to explore their biological activities, such as DNA-binding and antibacterial activity. The complexes were characterized by analytical and spectroscopic techniques. The crystal and molecular structure of [RuCl2(AsPh3)2(L)] has been determined by single crystal XRD. The cyclic voltammograms of the complexes in acetonitrile displayed either quasi-reversible or irreversible redox couples based on the metal centre. The ligand, dehydroacetic acid (DHA) and its metal complexes were tested against five pathogenic bacteria. Absorption titration and cyclic voltammetric studies revealed that the complexes interact with Herring Sperm ds DNA through different binding modes to different extents.  相似文献   

16.
Copper(II) and palladium(II) complexes with 15-membered asymmetric 5,9-dihydro-2,4,10,12-tetramethyl-1,5,9,13-monobenzotetraazacyclo[15]tetradecine have been synthesized and characterized. The electrochemical behaviors of the complexes showed a reduction and two one-electron irreversible oxidation waves in given potential ranges due to the metal ion and macrocycle ring, respectively. The electrocatalytic reduction of dioxygen on glassy carbon electrodes electropolymerized by such 15-membered and 14-membered tetraazaannulene complexes occurred at 160–280 mV (versus SCE), less negative than on the bared one at pH 7.0. The catalytic activities of the copper(II) complexes in the oxidation of p-Xstyrene (X = OCH3, CH3, H, F, Cl) were higher than those of the palladium(II) ones. The structures of the 15-membered copper(II) and palladium(II) complexes were determined using the X-ray diffraction method.  相似文献   

17.
The [ReOCl2(hmpbta)(AsPh3)] · MeCN, [ReOBr2(hmpbta)(AsPh3)] · MeCN, [ReOCl2(hmpbta)(PPh3)] · MeCN, [ReOBr2(hmpbta)(PPh3)] · MeCN, and [ReBr2(hmpbta)(PPh3)] · MeCN complexes have been prepared in the reactions of [ReOX3(EPh3)2] (X = Cl, Br; E = P, As) with 2-(2’-hydoxy-5′-methylphenyl)benzotriazole in molar ratio 1:1. All the compounds were structurally and spectroscopically characterized. The electronic structure of [ReOCl2(hmpbta)(AsPh3)] has been calculated with the density functional theory (DFT) method. The TDDFT/PCM calculations have been employed to produce a hundred of singlet excited-states starting from the ground-state geometry optimized in the gas phase, and the UV–Vis spectrum of [ReOCl2(hmpbta)(AsPh3)] has been discussed on this basis. The paper reports also X-ray structure and DFT calculations for the disubstituted [ReOCl(hmpbta)2] chelate.  相似文献   

18.
Complexes of aluminum and gallium trihalides with ethylenediamine (en) and N,N,N′,N′-tetramethylethylenediamine (tmen) of 2:1 composition have been synthesized and structurally characterized by single crystal X-ray diffraction analysis. In contrast to known molecular complexes of hydrido and methyl-substituted analogs, these solid complexes adopt ionic structures of the general type [M1X2LL]+[M2X4] (X = Br, I; M1, M2 = Al or Ga; LL = en, tmen).  相似文献   

19.
The density functional theory calculations were used to study the influence of the substituent at P on the oxidative addition of PhBr to Pd(PX3)2 and Pd(X2PCH2CH2PX2) where X = Me, H, Cl. It was shown that the Cipso-Br activation energy by Pd(PX3)2 correlates well with the rigidity of the X3P-Pd-PX3 angle and increases via the trend X = Cl < H < Me. The more rigid the X3P-Pd-PX3 angle is, the higher the oxidative addition barrier is. The exothermicity of this reaction also increases via the same sequence X = Cl < H < Me. The trend in the exothermicity is a result of the Pd(II)-PX3 bond strength increasing faster than the Pd(0)-PX3 bond strength upon going from X = Cl to Me. Contrary to the trend in the barrier to the oxidative addition of PhBr to Pd(PX3)2, the Cipso-Br activation energy by Pd(X2PCH2CH2PX2) decreases in the following order X = Cl > H > Me. This trend correlates well with the filled dπ orbital energy of the metal center. For a given X, the oxidative addition reaction energy was found to be more exothermic for the case of X2PCH2CH2PX2 than for the case of PX3. This effect is especially more important for the strong electron donating phosphine ligands (X = Me) than for the weak electron donating phosphine ligands (X = Cl).  相似文献   

20.
The heteroditopic, P-N-chelating ligand diphenylphosphino(phenyl pyridin-2-yl methylene)amine (1) has been synthesised via a simple ‘one-pot’ procedure and its donor characteristics assessed. The neutral [MX(Y)(12-P-N)] (3, M = Rh, X = Cl, Y = CO; 4, M = Pd, X = Y = Cl; 5, M = Pd, X = Cl, Y = Me; 6, M = Pt, X = Y = Cl; 7, M = Pt, X = Cl, Y = Me; 8, M = Pt, X = Y = Me) and cationic [Pd(Me)(MeCN)(12-P-N)][Z] (9, Z = B{3,5-(CF3)2-C6H3}4; 10, Z = PF6) complexes of 1 have been prepared and characterised. The solid-state structures of complexes 3, 4, 6 and 7 have been established by X-ray crystallography. Reactions of [PdCl(Me)(12-P-N)] towards CO and tBuNC have been investigated, affording the corresponding η1-acyl (12) and -iminoacyl (14) complexes, respectively. Similar insertion chemistry is observed for the cationic derivative 9. Treatment of the acyl complex 12 with ethene at elevated pressure establishes an equilibrium between the starting material and the product resulting from insertion, 13. Under catalytic conditions, combination of palladium(II) with 1 in MeOH affords a selective initiator for the formation of 4-oxo-hexanoic acid methyl ester (15) from CO/ethene (38 bar, 90 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号