首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two compounds Pb2In4P6O23 and Pb2InP3O11 in the new family of lead indium phosphates were synthesized by high temperature solution growth (HTSG) method and structurally characterized by X-ray single crystal diffraction, powder diffraction and electron microscopy. Two title compounds display different types of 3D architectures with interesting tunnel structure are built up of the InO6 octahedra and PO4 tetrahedra, sharing the corners or edges, and the Pb2+ cations are sitting in the tunnel. The structure of Pb2In4P6O23 features a novel 3D open framework which can be considered as built from the layer of {In4(P2O7)(PO4)2}2− parallel to the ac plane interconnected by bridging the single PO4. The structure of Pb2InP3O11 can be described by the assemblage of [InP2O11] units with monophosphate groups. The stereochemical activity of the PbII lone pair has also been discussed. The electronic band structure calculations for the two compounds have also been performed with the density functional theory method. The study of calculations and optical diffuse reflectance absorption spectrum measurement show both compounds are indirect band-gap insulators.  相似文献   

2.
The 950°C isothermal section of the InPO4-Na3PO4-Li3PO4 ternary system was studied and constructed; one-, two, and three-phase fields are outlined. Five solid-solution regions exist in the system: solid solutions based on the complex phosphate LiNa5(PO4)2 (olympite structure), the indium ion stabilized high-temperature Na3PO4 phase (Na3(1 − x)In x (PO4); space group Fm [`3]\bar 3 m), the complex phosphate Na3In2(PO4)3, and the α and β phases of the compound Li3In2(PO4)3. A narrow region of melt was found in the vicinity of eutectic equilibria. All the phases detected in the system are derivatives of phases existing in the binary subsystems. Isovalent substitution of lithium for sodium in Na3In2(PO4)3 leads to a significant increase in the region of a NASICON-like solid solution.  相似文献   

3.
The phase diagram Na8La2(PO3)8O3-Na5P3O10, which comprises part of the ternary system La2O3-Na2O-P2O5, was constructed in the laboratory. The oxyphosphate Na8La2(PO3)8O3 crystallizes in the orthorombic system; the lattice parameters are as follows a=8.96(4)Å, b=9.35(8)Å, c=12.29(7)Å.
Zusammenfassung Es wurde das Phasendiagramm Na8La2(PO3)8O3 - Na5P3O10, welches einen Teil des ternären Systemes La2O3 - Na2O - P2O5 enthält, konstruiert. Das Oxyphosphat Na8La2(PO3)8O3 kristallisiert rhombisch mit folgenden Gitterkonstanten: a=8.96(4)Å, b=9.35(8)Å, c=12.29(7)Å.


The author thanks Mrs. E. Dlugoszewska for technical assistance.  相似文献   

4.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXIII [1] In2P2O7 an Indium(I)‐diphosphatoindate(III), and In4(P2O7)3 — Synthesis, Crystallization, and Crystal Structure Solid state reactions via the gas phase lead to the new mixed‐valence indium(I, III)‐diphosphate In2P2O7. Colourless single crystals of In2P2O7 have been grown by isothermal heating of stoichiometric amounts of InPO4 and InP (800 °C; 7d) using iodine as mineralizer. The structure of In2P2O7 [P21/c, a = 7.550(1) Å, b = 10.412(1) Å, c = 8.461(2) Å, b = 105.82(1)°, 2813 independent reflections, 101 parameter, R1 = 0.031, wR2 = 0.078] is the first example for an In+ cation in pure oxygen coordination. Observed distances d(InI‐O) are exceptionally long (dmin(InI‐O) = 2.82 Å) and support assumption of mainly s‐character for the lone‐pair at the In+ ion. Single crystals of In4(P2O7)3 were grown by chemical vapour transport experiments in a temperature gradient (1000 → 900 °C) using P/I mixtures as transport agent. In contrast to the isostructural diphosphates M4(P2O7)3 (M = V, Cr, Fe) monoclinic instead of orthorhombic symmetry has been found for In4(P2O7)3 [P21/a, a = 13.248(3) Å, b = 9.758(1) Å, c = 13.442(2) Å, b = 108.94(1)°, 7221 independent reflexes, 281 parameter, R1 = 0.027, wR2 = 0.067].  相似文献   

5.
The double phosphate Cs3In3(PO4)4, prepared by a flux technique, features a fragment of composition In3O16 formed by three corner‐sharing InO6 polyhedra. The central In atom resides on a twofold rotation axis, while the other two In atoms are on general positions. The O atoms in this fragment also belong to PO4 tetrahedra, which link the structure into an overall three‐dimensional anionic In–O–P network that is penetrated by tunnels running along c. Two independent Cs+ cations reside inside the tunnels, one of which sits on a centre of inversion. In general, the organization of the framework is similar to that of K3In3(PO4)4, which also contains an In3O16 fragment. However, in the latter case the unit consists of one InO7 polyhedron and one InO6 polyhedron sharing an edge, with a third InO6 octahedron connected via a shared corner. Calculations of the Voronoi–Dirichlet polyhedra of the alkali metals give coordination schemes for Cs of [9+2] and [8+4] ( symmetry), and for K of [8+1], [7+2] and [7+2]. This structural analysis shows that the coordination requirements of the alkali metals residing inside the tunnels cause the difference in the In3O16 geometry.  相似文献   

6.
Phase equilibria in the systems YPO4-Mg3(PO4)2, YPO4-Mg2P2O7 and YPO4-Mg3(PO4)2-Mg2P2O7 have been examined by thermal, X-ray and microscopic methods. Their phase diagrams have been provided.
Zusammenfassung Mittels thermischen, röntgenografischen und mikroskopischen Methoden wurden die Phasengleichgewichte in den Systemen YPO4-Mg3(PO4)2, YPO4-Mg2 P2O7 und YPO4-Mg3(PO4)2-Mg2P2O7 untersucht und deren Phasendiagramme ermittelt.
  相似文献   

7.
Phase equilibria in the partial system Mg2P2O7?Na8Mg6(P2O7)5?NaPO3?Mg(PO3)2 were examined by differential thermal analysis and powder X-ray diffraction. It was found that there are six sections in the composition range under investigation.  相似文献   

8.
The ternary system Y2O3?CaO?P2O5 has been examined by DTA, X-ray diffraction, IR and microscopic methods. Its phase diagram has been provided within the composition range YPO4?Ca3(PO4)2?P2O5. The occurrence of four mixed phosphates: Ca3Y(PO4)3, CaYP3O10, CaY(PO3)5, Ca2Y(PO3)7 has been discovered in the system. Basic X-ray data have been determined for these newly discovered compounds and several methods of their synthesis developed.  相似文献   

9.
The phase formation of complex phosphates in the Na2O-P2O5-Fe2O3-Nb2O5 flux system was studied in the ranges of sodium-to-phosphorus ratios of 0.7–1.2 and iron-to-niobium ratios of 0.9–2.7. The crystallization region and crystallization conditions for the compounds of composition Na3?2x Fe2-x Nbx(PO4)3 (0.8 ≤ x < 1.2) were found. These compounds can be prepared in two (hexagonal and monoclinic) polymorphs. Single-crystal X-ray diffraction experiments were carried out for hexagonal NaFeNb(PO4)3 (space group $R\bar 3$ c, a = 8.590 Å, c = 22.013 Å). The polymorphism in Na3-2x Fe2-x Nbx(PO4)3 complex phosphates is considered as dependent on the preparation parameters.  相似文献   

10.
Wang  Shutao  Wang  Enbo  Hou  Yu  Li  Yangguang  Wang  Li  Yuan  Mei  Hu  Changwen 《Transition Metal Chemistry》2003,28(6):616-620
A novel organic/inorganic hybrid molybdenum phosphate, [NH3(CH2CH2)2NH3]3[NH3(CH2CH2)2NH2]Na5-[Mo6O12(OH)3(PO4)(HPO4)3]2·4H2O (1), involving molybdenum presented in V oxidation, has been hydrothermally prepared and characterized by elemental analysis, i.r., u.v.–vis., x.p.s., t.g. and single crystal X-ray diffraction. The structure of the title compound (1) may be considered to consist of two [Mo6O12(OH)3(PO4)(HPO4)3] units bonded together with NaO6 octahedra, forming dimers. Further, these dimers connect with each other through four Na+ cations as bridges, giving rise to novel one-dimensional chain-like skeleton. Piperazines exist among inorganic chains acting as charge balancing cations.  相似文献   

11.
Subsolidus sections in the systems Li3PO4-InPO4 (950°C) and Na3PO4-InPO4 (800, 900, and 1000°C) have been studied by X-ray powder diffraction. The compound Li3In(PO4)2 has been synthesized, and the nasicon-type solid solution Li3(1 ? x)In2 + x(PO4)3 (0.67 ≤ x ≤ 0.80). has been found to exist. In the system Na3PO4-InPO4, the solid solution Na3(1 ? x)Inx/3PO4 (0 ≤ x ≤ 0.2) and two complex phosphates exist: Na3In(PO4)2 and Na3In2(PO4)3. These complex phosphates are dimorphic, with the irreversible-transition temperature equal to 675 and 820°C, respectively. Na3In(PO4)2 degrades at 920°C. Ionic conductivity has been measured in some phases in the system.  相似文献   

12.
Single crystals of the first anhydrous thallium nickel phosphates were prepared by reaction of heterogeneous Tl/Ni/P alloys with oxygen. TlNi4(PO4)3 (pale‐yellow, orthorhombic, space group Cmc21, a = 6.441(2)Å, b = 16.410(4)Å, c = 9.624(2)Å, Z = 4) crystallizes with a structure closely related to that of NaNi4(PO4)3. Tl4Ni7(PO4)6 (yellow‐brown, monoclinic, space group Cm, a = 10.711(1)Å, b = 14.275(2)Å, c = 6.688(2)Å, β = 103.50(2)°, Z = 8) is isotypic with Na4Ni7(PO4)6, and Tl2Ni4(P2O7)(PO4)2 (brown, monoclinic, space group C2/c, a = 10.389(2)Å, b = 13.888(16)Å, c = 18.198(3)Å, β = 103.1(2)°, Z = 8) adopts the K2Ni4(P2O7)(PO4)2 structure. Tl2Ni4(P2O7)(PO4)2 could also be prepared in nearly single phase form by reaction of Tl2CO3, NiO, and (NH4)2HPO4.  相似文献   

13.
The new ternary calcium indium(III) phosphate CaIn2(PO4)2(HPO4) with mixed octahedral-tetrahedral framework was synthesized through hydrothermal reaction of stoichiometric amounts of CaO and InCl3 with excess of H3PO4 and H2O at pH = 1. Single crystal x-ray diffraction studies show the compound to crystallize in monoclinic symmetry, space group P21/n (#14) with a = 657.08(6), b = 2023.7(2), c = 665.72(7) pm, β = 91.20(1)°, Z = 4 and R = 0.043. The framework is built up of dimers of edge-sharing InO6 octahedra forming In2O10 units sharing all their OXO ligands with PO4 tetrahedra, and HPO4 groups.  相似文献   

14.
15.
The previously unknown ternary system Y2O3?MgO?P2O5 has been examined by thermal, X-ray and microscopic methods. Its phase diagram has been determined over the composition range: YPO4?Mg3(PO4)2?Mg(PO3)2?Y(PO3)3. In the system, the existence of two mixed phosphates: MgYP3O10 and MgY(PO3)5 has been found, and they occur, according to their composition, at the sections YPO4?Mg(PO3)2 and Y(PO3)3?Mg(PO3)2, respectively.  相似文献   

16.
A number of sensing systems based on indium oxide doped with various metal oxides (In2O3 · WO3, In2O3 · ZnO, In2O3 · RuO2, In2O3 · Gd2O3, and In2O3 · Sm2O3) in amounts of no more than 3–5 mol % and also Au · In2O3 films were studied as sensors for detecting NO2 in air. The working temperature of sensors was 250°C (except for In2O3 · RuO2, for which T = 150–190°C). In2O3 · WO3-based sensors reach a high sensitivity especially at a concentration of NO2 in air higher than 10 ppm (the relative sensor conductivity changes by 2.5 orders of magnitude). However, a shortcoming of this system is an increased response time (7–9 min) as compared to the other studied systems, for which the response time does not exceed 15–20 s. In2O3 · Gd2O3 and In2O3 · Sm2O3 films exhibit the best sensing properties in sensitivity, selectivity, and stability. Various NO2 species adsorbed on the surface of dispersed indium oxide were detected by Fourier-transform IR spectroscopy. The mechanism of changing the conductivity of In2O3 · Gd2O3 films upon detecting NO2 in air is discussed.  相似文献   

17.
Contributions on Crystal Structures and Thermal Behaviour of Anhydrous Phosphates. XXIII. Preparation, Crystal Structure, and Thermal Behaviour of the Mercury(I) Phosphates α-(Hg2)3(PO4)2, β-(Hg2)3(PO4)2, and (Hg2)2P2O7 Light-yellow single crystals of (Hg2)2P2O7 have been obtained via chemical vapour transport in a temperature gradient (500 °C → 450 °C, 23 d) using Hg2Cl2 as transport agent. Characteristic feature of the crystal structure (P2/n, Z = 2, a = 9,186(1), b = 4,902(1), c = 9,484(1) Å, β = 98,82(2)°, 1228 independent of 5004 reflections, R(F) = 0,066 for 61 variables, 7 atoms in the asymmetric unit) are Hg22+-units with d(Hg1–Hg1) = 2,508 Å and d(Hg2–Hg2) = 2,519 Å. The dumbbells Hg22+ are coordinated by oxygen, thus forming polyhedra [(Hg12)O4] and [(Hg22)O6]. These polyhedra share some oxygen atoms. In addition they are linked by the diphosphate anion P2O74– (ecliptic conformation; ∠(P,O,P) = 129°) to built up the 3-dimensional structure. Under hydrothermal conditions (T = 400 °C) orange single crystals of the mercury(I) orthophosphates α-(Hg2)3(PO4)2 and β-(Hg2)3(PO4)2 have been obtained from (Hg2)2P2O7 and H3PO4 (c = 1%). The crystal structures of both modifications have been refined from X-ray single crystal data [α-form (β-form): P21/c (P21/n), Z = 2 (2), a = 8,576(3) (7,869(3)), b = 4,956(1) (8,059(3)), c = 15,436(3) (9,217(4)) Å, β = 128,16(3) (108,76(4))°, 1218 (1602) independent reflections of 4339 (6358) reflections, R(F) = 0,039 (0,048) for 74 (74) variables, 8 (8) atoms in the asymmetric unit]. In the structure of α-(Hg2)3(PO4)2 three crystallographically independent mercury atoms, located in two independent dumbbells, are coordinated by three oxygen atoms each. Thus, [(Hg2)O6] dimers with a strongly distorted tetrahedral coordination of all mercury atoms are formed. Such dimers are present besides [(Hg2)O5]-polyhedra in the less dense crystal structure of β-(Hg2)3(PO4)2 (d(Hg–Hg) = 2,518 Å). The mercury(I) phosphates are thermally labile and disproportionate between 200 °C (β-(Hg2)3(PO4)2) and 480 °C (α-(Hg2)3(PO4)2) to elemental mercury and the corresponding mercury(II) phosphate.  相似文献   

18.
Binary solvent mixtures containing NaClO4 salt were investigated as electrolytes for sodium-ion batteries. The electrochemical performance of Na4Fe3(PO4)2(P2O7) cathodes was substantially improved when paired with an ethylene carbonate (EC)/propylene carbonate (PC)-based electrolyte. Our investigation revealed that EC/PC/1 M NaClO4 exhibits superior oxidation durability at the cathode and is highly stable toward a Na-metal electrode.  相似文献   

19.
Indium Tungstate, In2(WO4)3 – an In3+ Conducting Solid Electrolyte Polycrystalline In2(WO4)3 has been electrochemically characterized and unambiguously identified as an In3+ conducting solid electrolyte. By heating, indium tungstate undergoes a phase transition between 250 °C and 260 °C transforming from a monoclinic to an orthorhombic phase for which the conduction properties have been determined. The adopted crystal structure in this high temperature region corresponds to the Sc2(WO4)3 type structure. The electrical conductivity was investigated by impedance spectroscopy in the temperature range 300–700 °C and amounts to about 3.7 · 10–5 Scm–1 at 600 °C with a corresponding activation energy of 59.5 kJ/mol. Polarization measurements indicated an exclusive current transport by ionic charge carriers with a transference number of about 0.99. In dc electrolysis experiments, the trivalent In3+ cations were undoubtedly identified as mobile species. A current transport by oxide anions was not observed.  相似文献   

20.
Double-Octahedra Clusters [V2O9] in the Crystal Structure of Vanadium (III) Diphosphate, V4(P2O7)3 . As the first example for MIII diphosphates the crystal structure of V4(P2O7)3 (“ I ”) has been determined by means of X-ray diffraction of single crystals. I – according to [7] obtainable by thermal interaction of V2O5, H3PO3, and H3PO4 – crystallizes orthorhombically (data see above); in the unit cell two kinds of isolated doubleoctahedra (clusters) [V2O9], having the symmetry Cs, exist. Due to a mutual face-connection of the octahedra, within these clusters relatively short V–V distances are resulting: 2.774(8) and 3.026(7) Å. The diphosphate anions, O3POPO34? (three kinds; each having the symmetry Cs and staggered conformation), exhibit POP bond angles of 170°, being remarkably large for non-centrosymmetry. Because of the [M2IIIO9] clusters in I , and also in the isostructural diphosphates Cr4(P2O7)3 and Fe4(P2O73), magnetic investigations seem to be challenged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号