首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A highly sensitive and specific LC‐ESI‐MS/MS method has been developed and validated for simultaneous quantification of felodipine (FDP) and metoprolol (MPL) in rat plasma (50 μL) using phenacetin as an internal standard (IS) as per the FDA guidelines. Liquid–liquid extraction method was used to extract the analytes and IS from rat plasma. The chromatographic resolution of FDP, MPL and IS was achieved with a mobile phase consisting of 0.2% formic acid in water–acetonitrile (25:75, v/v) with a time program flow gradient on a C18 column. The total chromatographic run time was 4.0 min and the elution of FDP, MPL and IS occurred at 1.05, 2.59 and 1.65 min, respectively. A linear response function was established for the range of concentrations 0.59–1148 and 0.53–991 ng/mL for FDP and MPL, respectively, in rat plasma. The intra‐ and inter‐day accuracy and precision values for FDP and MPL met the acceptance as per FDA guidelines. FDP and MPL were stable in battery of stability studies viz., bench‐top, auto‐sampler and freeze–thaw cycles. The validated assay was applied to a pharmacokinetic study in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A rapid, sensitive and specific method using liquid chromatography with tandem mass spectrometric detection (LC‐MS) was developed for the analysis of sauchinone in rat plasma. Di‐O‐methyltetrahydrofuriguaiacin B was used as internal standard (IS). Analytes were extracted from rat plasma by liquid–liquid extraction using ethyl acetate. A 2.1 mm i.d. × 150 mm, 5 µm, Agilent Zorbax SB‐C18 column was used to perform the chromatographic analysis. The mobile phase was methanol–deionized water (80:20, v/v). The chromatographic run time was 7 min per injection and the flow‐rate was 0.2 mL/min. The tandem mass spectrometric detection mode was achieved with electrospray ionization interface in positive‐ion mode (ESI+). The m/z ratios [M + Na]+, m/z 379.4 for sauchinone and m/z 395.4 for IS were recorded simultaneously. Calibration curve were linear over the range of 0.01–5 µg/mL. The lowest limit of quantification was 0.01 µg/mL. The intra‐day and inter‐day precision and accuracy of the quality control samples were 2.94–9.42% and 95.79–108.05%, respectively. The matrix effect was 64.20–67.34% and the extraction recovery was 93.28–95.98%. This method was simple and sensitive enough to be used in pharmacokinetic research for determination of sauchinone in rat plasma. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A highly sensitive and specific LC‐MS/MS‐ESI method has been developed for simultaneous quantification of metformin (MFN) and repaglinide (RGN) in rat plasma (50 μL) using phenacetin as an internal standard (IS). Simple protein precipitation was used to extract MFN and RGN from rat plasma. The chromatographic resolution of MFN, RGN and IS was achieved with a mobile phase consisting of 0.2% formic acid in water–acetonitrile (1:1, v/v) with a time program flow gradient on a Chromolith RP‐18e column. The total chromatographic run time was 3.5 min and the elution of MFN, RGN and IS occurred at 1.64, 2.21 and 2.15 min, respectively. A linear response function was established for the range of concentrations 0.855–394 and 0.021–21.7 ng/mL for MFN and RGN, respectively. The intra‐ and inter‐day precision values for MFN and RGN met the acceptance as per FDA guidelines. MFN and RGN were stable in battery of stability studies viz., bench‐top, auto‐sampler and freeze–thaw cycles. The developed assay was applied to a pharmacokinetic study in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The current study aims to develop a specific and sensitive LC-MS/MS method for determination of bis(7)-tacrine (B7T) in rat plasma. A 100 microL plasma sample was extracted with ethyl acetate. B7T and the internal standard (IS), pimozide, in the samples were then analyzed with LC-MS/MS in positive electrospray ionization condition. Chromatographic separation of B7T and IS was achieved in a C(18) reversed-phase HPLC column (150 x 2.1 mm i.d.) by isocratic elution with a mobile phase consisting of 0.05% formic acid in water and acetonitrile (1:1, v/v) at a flow rate of 0.35 mL/min. Multiple-reaction monitoring (MRM) mode was employed to measure the ion transitions: m/z 247 to 197 for B7T and m/z 462 to m/z 328 for IS, respectively. The method was linear over the studied ranges of 100-5000 and 10-100 ng/mL. The intra-day and inter-day variations of the analysis were less than 6.8% with standard errors less than 9.0%. The detection limit of B7T in rat plasma was 1 ng/mL. The developed method was successfully applied to the pharmacokinetic study of B7T after intravenous administration of 1 mg/kg B7T and further proved to be readily utilized for determination of B7T in rat plasma samples.  相似文献   

5.
A highly sensitive and specific LC-MS/MS method has been developed and validated for the estimation of torcetrapib (TTB) with 100 microL hamster/dog plasma using DRL-16126 as an internal standard (IS). The API-4000 Q Trap LC-MS/MS was operated under multiple-reaction monitoring mode using the electrospray ionization technique. The assay procedure involved extraction of TTB and IS from plasma with acetonitrile, which yielded consistent recoveries of 65.73 and 94.01% for TTB and 79.68 and 90.70% for IS in hamster and dog plasma, respectively. The total chromatographic run time was 3.0 min and the elution of TTB and IS occurred at approximately 2.25 and 2.20 min, respectively. The resolution of peaks was achieved with 0.01 m ammonium acetate:acetonitrile (15:85, v/v) at a flow rate of 0.40 mL/min on an Inertsil ODS-3 column. The method was proved to be accurate and precise at linearity range of 1.00-200 ng/mL with a correlation coefficient (r) of > or = 0.993. The method was rugged with 1.00 ng/mL as the lower limit of quantitation. TTB was stable in the battery of stability studies. The application of the assay to preclinical pharmacokinetic studies confirmed the utility of the assay to derive hamster/dog pharmacokinetic parameters.  相似文献   

6.
A rapid, simple, selective and sensitive LC‐MS/MS method was developed for the determination of curculigoside in rat plasma. The analytical procedure involves extraction of curculigoside and syringin (internal standard, IS) from rat plasma with a one‐step extraction method by protein precipitation. The chromatographic resolution was performed on an Agilent XDB‐C18 column (4.6 × 50 mm, 5 µm) using an isocratic mobile phase of methanol with 0.1% formic acid and H2O with 0.1% formic acid (45:55, v/v) at a flow rate of 0.35 mL/min with a total run time of 2.0 min. The assay was achieved under the multiple‐reaction monitoring mode using positive electrospray ionization. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over 4.00–4000 ng/mL (R = 0.9984) for curculigoside with a lower limit of quantification of 4.00 ng/mL in rat plasma. The intra‐ and inter‐day precisions and accuracies were 3.5–4.6 and 0.7–9.1%, in rat plasma, respectively. The validated LC‐MS/MS method was successfully applied to a pharmacokinetic study of curculigoside in rats after a single intravenous and oral administration of 3.2 and 32 mg/kg. The absolute bioavailability of curculigoside after oral administration was 1.27%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A highly sensitive, rapid assay method has been developed and validated for the estimation of abiraterone (ART) in rat and human plasma with liquid chromatography coupled to tandem mass spectrometry and electrospray ionization in the positive-ion mode. The assay procedure involves extraction of ART and phenacetin (internal standard, IS) from rat and human plasma with a simple protein precipitation extraction process. Chromatographic separation was achieved using an isocratic mobile (10 mm ammonium acetate:acetonitrile, 10:90, v/v) at a flow-rate of 0.70 mL/min on an Atlantis dC(18) column maintained at 40 °C with a total run time of 3.5 min. The MS/MS ion transitions monitored were 350.3 → 156.0 for ART and 180.2 → 110.1 for IS. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.20 ng/mL and the linearity range extended from 0.20 to 201 ng/mL. The intra- and inter-day precisions were in the ranges 2.39-10.4 and 4.84-9.53% in rat plasma and 3.82-10.8 and 6.97-8.94% in human plasma.  相似文献   

8.
A high performance liquid chromatography/tandem mass spectrometry assay was first developed and validated for the quantification of methyl protodioscin (MPD), a natural furostanol saponin with distinct antitumor activity, in rat plasma with 17alpha-ethinylestradiol as internal standard (IS). Methanol-mediated protein precipitation was employed for plasma sample pretreatment. The separation was achieved on a C(18) column (150 x 4.6 mm, i.d., 5 microm) by isocratic elution with methanol-water (72:28, v/v) as mobile phase at a flow rate of 1.0 mL/min. Ion acquisition was performed in selective reaction monitoring positive mode by monitoring the transition of m/z 1085.7 --> 1053.7 for MPD, and in selective ion monitoring negative mode by monitoring the deprotonated ion m/z 295.5 for IS. The assay was linear over the concentration range of 2.024-270.0 microg/mL with 2.024 microg/mL as the lower limit of quantification. It was specific, accurate, precise and reproducible with intra- and inter-run RSD <8.3% and RE between -11.5 and 12.8%. The assay was successfully applied to a preclinical pharmacokinetic study after an intravenous dose of 40 mg/kg MPD to rats.  相似文献   

9.
A high-performance liquid chromatographic method with UV detection has been developed for the determination of iguratimod (T-614) in rat plasma. Plasma was precipitated with acetonitrile after the addition of the internal standard (IS), N-[4-(2-formylaminoacetyl)-5-methoxy-2-phenoxyphenyl]-methanesulfonamide. The chromatographic separation was achieved on a reversed-phase C(18) column with the mobile phase acetonitrile-acetic acid aqueous solution, pH 4.5 (40:60, v/v), at a flow rate of 1 mL/min, and the UV detection wavelength was set at 257 nm. The calibration curve was linear over the range 0.10-50.0 microg/mL, and the lower limit of quantification was 0.10 microg/mL. The intra- and inter-day relative standard deviations were all less than 11.5%. The method has been successfully applied to study the pharmacokinetics of iguratimod in rats. A single 10 mg/kg dose of iguratimod was given to the rats by intragastric administration. The mean maximum plasma concentration of iguratimod for the six rats was 14.5 microg/mL, and the mean elimination half-life of iguratimod was 4.0 h.  相似文献   

10.
A rapid and sensitive LC‐MS/MS method for the quantification of fenofibric acid in rat plasma was developed and validated. Plasma samples were prepared by liquid–liquid extraction with a mixture of N‐hexane–dichloromethane–isopropanol (100:50:5, v/v/v). Isocratic chromatographic separation was performed on a reversed‐phase Discovery C18 column (2.1 × 50 mm, 5 µm). The mobile phase was methanol–water–formic (75:25:0.25, v/v/v). Detection of fenofibric acid and the internal standard (IS) diclofenac acid was achieved by ESI MS/MS in the negative ion mode using m/z 317 → m/z 213 and m/z 294 → m/z 250 transitions, respectively. The method was linear from 0.005 to 1.250 µg/mL when 100 μL plasma was analyzed. The lower limit of quantification was 0.005 µg/mL. The intra‐ and inter‐day precision values were below 8.2%, and accuracy ranged from ?0.9 to 2.1% in all quality control samples. The recovery was 90.3–94.7% and 83.3% for fenofibric acid and IS, respectively. Total run time for each sample analysis was 2.5 min. The validated method was successfully applied to a pharmacokinetic study in six rats after oral administration of fenofibrate, the ester prodrug of fenofibric acid (equivalent to fenofibric acid 5 mg/kg). The method permits laboratory scientists with access to the appropriate instrumentation to perform rapid fenofibric acid determination. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A highly sensitive and specific LC-MS/MS method has been developed and validated for the estimation of pramipexole (PPX) with 500 microL human plasma using memantine as an internal standard (IS). The API-4000 was operated under multiple-reaction monitoring mode (MRM) using the electrospray ionization technique. Solid-phase extraction was used to extract PPX and IS from human plasma. The resolution of peaks was achieved with 0.01 m ammonium acetate buffer (pH 4.4):acetonitrile (30:70, v/v) on a Discovery CN column. The total chromatographic run time was 3.0 min and the elution of PPX and IS occurred at approximately 2.32 and 2.52, respectively. The MS/MS ion transitions monitored were 212.10 --> 153.10 for PPX and 180.20 --> 107.30 for IS. The method was proved to be accurate and precise at linearity range of 20-3540 pg/mL with a correlation coefficient (r) of > or =0.999. The intra- and inter-day precision and accuracy values found to be within the assay variability limits as per the FDA guidelines. The developed assay method was applied to a pharmacokinetic study in human volunteers following oral administration of 0.25 mg PPX tablet.  相似文献   

12.
A simple, sensitive and specific high‐performance liquid chromatography mass spectrometry (LC‐MS/MS) method was developed and validated for the quantification of β‐hydroxy‐β‐methyl butyrate (HMB) in small volumes of rat plasma using warfarin as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple reaction‐monitoring mode using the electrospray ionization technique. A simple liquid–liquid extraction process was used to extract HMB and IS from rat plasma. The total run time was 3 min and the elution of HMB and IS occurred at 1.48 and 1.75 min respectively; this was achieved with a mobile phase consisting of 0.1% formic acid in a water–acetonitrile mixture (15:85, v/v) at a flow rate of 1.0 mL/min on a Agilent Eclipse XDB C8 (150 × 4.6, 5 µm) column. The developed method was validated in rat plasma with a lower limit of quantitation of 30.0 ng/mL for HMB. A linear response function was established for the range of concentrations 30–4600 ng/mL (r > 0.998) for HMB. The intra‐ and inter‐day precision values for HMB were acceptable as per Food and Drug Administration guidelines. HMB was stable in the battery of stability studies, viz. bench‐top, autosampler freeze–thaw cycles and long‐term stability for 30 days in plasma. The developed assay method was applied to a bioavailability study in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A highly sensitive and specific LC-MS/MS method has been developed and validated for the estimation of zafirlukast (ZFK) with 500 microL human plasma using valdecoxib as an internal standard (IS). The API-4,000 LC-MS/MS was operated under multiple reaction-monitoring mode using the electrospray ionization technique. The assay procedure involved extraction of ZFK and IS from human plasma with ethyl acetate. The resolution of peaks was achieved with 10 mm ammonium acetate (pH 6.4):acetonitrile (20:80, v/v) on a Hypersil BDS C(18) column. The total chromatographic run time was 2.0 min and the elution of ZFK and IS occurred at approximately 1.11 and 1.58 min, respectively. The MS/MS ion transitions monitored were 574.2 --> 462.1 for ZFK and 313.3 --> 118.1 for IS. The method was proved to be accurate and precise at a linearity range of 0.15-600 ng/mL with a correlation coefficient (r) of >or=0.999. The method was rugged with 0.15 ng/mL as lower limit of quantitation. The intra- and inter-day precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. The developed assay method was applied to a pharmacokinetic study in human volunteers following oral administration of 20 mg ZFK tablet.  相似文献   

14.
A highly sensitive and rapid bioanalytical method has been developed and validated for the estimation of indomethacin in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves a simple liquid–liquid extraction of indomethacin and phenacetin (internal standard, IS) from rat plasma with acetonitrile. Chromatographic separation was achieved with 0.2% formic acid–acetonitrile (25:75, v/v) at a flow rate of 0.60 mL/min on an Atlantis dC18 column with a total run time 3.0 min. The MS/MS ion transitions monitored were 357.7 → 139.1 for indomethacin and 180.20 → 110.10 for IS. Method validation and pharmacokinetic study plasma analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.51 ng/mL and the linearity was observed from 0.51 to 25.5 ng/mL. The intra‐ and inter‐day precisions were in the range of 1.00–10.2 and 5.88–9.80%, respectively. This novel method has been applied to an oral pharmacokinetic study in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A selective, sensitive and rapid LC–MS/MS method has been developed and validated as per US Food and Drug Administration regulatory guidelines for the simultaneous quantitation of colchicine and febuxostat in rat plasma. Colchicine and febuxostat were extracted from the rat plasma using 10% tert-butyl methyl ether in ethyl acetate using colchicine-d6 as an internal standard (IS). The chromatographic separation of colchicine, febuxostat and the IS was achieved using a mobile phase comprising 5 mm ammonium formate and 0.025% formic acid in acetonitrile (20:80, v/v) in isocratic mode on an Eclipse XDB-C18 column. The injection volume and flow rate were 5.0 μl and 0.9 ml/min, respectively. Colchicine and febuxostat were detected by positive electrospray ionization in multiple reaction monitoring mode using transition pairs (Q1 → Q3) of m/z 400.10 → 358.10 and 317.05 → 261.00, respectively. The assay was linear in the ranges of 0.25–254 and 2.60–622 ng/ml for colchicine and febuxostat, respectively. The inter- and intra-day precision values were 0.58–13.0 and 1.03–4.88% for colchicine and febuxostat, respectively. No matrix or carryover effects were observed during the validation. Both analytes were stable on the bench-top, in the autosampler and in storage (freeze–thaw cycles and long-term storage at −80 ° C). A pharmacokinetic study in rats was performed to show the applicability of the validated method.  相似文献   

16.
A sensitive, simple, fast and rugged hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) method for the determination of paroxetine was developed and validated over curve range 0.050-50 ng/mL using only 0.4 mL plasma. This is the first published LC-MS/MS method and the low limit of quantitation of this method is 10-fold lower than previously published methods. A simple liquid-liquid extraction method using methyl-tert butyl ether (MTBE) as the extraction solvent was used to extract paroxetine and the internal standard (IS) fentanyl-d(5) from plasma. The extract was evaporated to dryness, reconstituted and injected onto a silica column using a low aqueous-high organic mobile phase. The chromatographic run time was 2.0 min per injection, with retention times of 1.1 and 1.2 min for paroxetine and IS, respectively. The detection was by monitoring paroxetine at m/z 330 --> 192 and IS at m/z 342 --> 188, respectively. The inter-day precision and accuracy of the quality control (QC) samples were <5.0% relative standard deviation (RSD) and <2.9% relative error (RE). This method can be used for supporting therapeutical drug monitoring and pharmacokinetic or drug-drug interaction studies.  相似文献   

17.
A sensitive, rapid and robust HPLC method with tandem mass spectrometry (HPLC/MS/MS) detection has been developed and validated for the quantification of sotalol in rat plasma. Plasma samples were precipitated with acetonitrile before analysis. The chromatographic separation was performed on an Atlantis hydrophilic interaction liquid chromatography Silica column (50 × 2.1 mm, 3 µm) with a gradient mobile phase of 10 mm NH4COOH (containing 0.2% of formic acid) as buffer A and acetonitrile as mobile phase B. Sotalol (m/z 273.2 → 255.1) and atenolol (the internal standard, IS, m/z 267.2 → 190.1) were monitored under positive ionization mode with 5500 QTRAP. Retention time of sotalol and the IS were 2.69 and 3.43 min, respectively. The linear range was 5–500 nm based on the analysis of 0.1 mL of plasma. The intrabatch precision ranged from 1.2 to 6.1%, and the inter‐batch precision was from 3.3 to 6.5%. The coefficient of variation of IS‐normalized matrix factor was 7.6%. Experiments for stability were performed and the analyte was sufficiently stable. A run time of 6 min for each injection made it possible to analyze a high throughput of plasma samples. The assay was successfully applied to the determination of sotalol in rat plasma after a micro‐dose oral administration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A high‐performance liquid chromatographic assay with tandem mass spectrometric detection was developed to simultaneously quantify fluoxetine and olanzapine in human plasma. The analytes and the internal standard (IS) duloxetine were extracted from 500 μL aliquots of human plasma through solid‐phase extraction. Chromatographic separation was achieved in a run time of 4.0 min on a Hypersil Gold C18 column (50 × 4.6 mm, 5 µm) using isocratic mobile phase consisting of acetonitrile–water containing 2% formic acid (70:30, v/v), at a flow‐rate of 0.5 mL/min. Detection of analytes and internal standard was performed by electrospray ionization tandem mass spectrometry, operating in positive‐ion and multiple reaction monitoring acquisition mode. The protonated precursor to product ion transitions monitored for fluoxetine, olanzapine and IS were m/z 310.01 → 147.69, 313.15 → 256.14 and 298.1 → 153.97, respectively. The method was validated over the concentration range of 1.00–150.20 ng/mL for fluoxetine and 0.12–25.03 ng/mL for olanzapine in human plasma. The intra‐batch and inter‐batch precision (%CV) across four quality control levels was ≤6.28% for both the analytes. In conclusion, a simple and sensitive analytical method was developed and validated in human plasma. This method is suitable for measuring accurate plasma concentration in bioequivalence study and therapeutic drug monitoring as well, following combined administration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A sensitive and specific high‐performance liquid chromatography–electrospray ionization–tandem mass spectrometry (HPLC‐ESI‐MS/MS) method was developed and validated for determination of rupestonic acid in rat plasma. Protein precipitation method was used to extract rupestonic acid and the internal standard (IS) warfarin sodium from rats plasma. The chromatographic separation was performed on an Agela Venusil XBP Phenyl column with an isocratic mobile phase consisting of methanol–0.1% formic acid in water (40:60, v/v), pumped at 0.4 mL/min. Rupestonic acid and the internal standard (IS) warfarin sodium were detected at m/z 247.2 → 203.1 and 307.1 → 161.3 in positive ion and multiple reaction monitoring mode respectively. The standard curves were linear over the concentration range of 2.5–5000 ng/mL (r2 > 0.99). The within‐day and between‐day precision values for rupestonic acid at four concentrations were 4.7–5.7 and 4.4–8.7%, respectively. The method described herein was fully validated and successfully applied to the pharmacokinetic study after an intravenous administration of rupestonic acid in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A sensitive, selective and rapid ultra‐performance liquid chromatography/tandem mass spectrometry method was developed and validated for the quantification of flavokawain B in rat plasma using myrislignan as an internal standard. Sample preparation was accomplished through a protein precipitation extraction process. Chromatographic resolution of flavokawain B and the IS was achieved on an Agilent XDB‐C18 column (2.1 × 100 mm, 1.8 μm) using a gradient mobile phase comprising 0.1% formic acid in water and acetonitrile delivered at a flow rate of 0.5 mL/min. Flavokawain B and the IS eluted at 3.27 and 1.96 min, respectively. The total chromatographic run time was 6.0 min. A linear response function was constructed in the concentration range 0.524–1048 ng/mL. Method validation was performed as per the US Food and Drug Administration guidelines and the results met the acceptance criteria. Intra‐ and inter‐day accuracy and precision were in the ranges of ?14.3–13.2 and 3.4–11.8%, respectively. Flavokawain B was demonstrated to be stable under various stability conditions. This method has been applied to a pharmacokinetic study in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号