首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
宋红州  张平  段素青  赵宪庚 《中国物理》2006,15(12):3019-3025
We have proposed a method to separate Rashba and Dresselhaus spin splittings in semiconductor quantum wells by using the intrinsic Hall effect. It is shown that the interference between Rashba and Dresselhaus terms can deflect the electrons in opposite transverse directions with a change of sign in the macroscopic Hall current, thus providing an alternative way to determine the different contributions to the spin--orbit coupling.  相似文献   

2.
We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors. Both the quantum wire and conductors are described by a hard-wall confining potential. Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density j^Ts,xi and j^Ts,yi(i=x, y, z). We find that the elements j^Ts,xx and j^Ts,yy have a antisymmetrical relation and the element j^Ts,yz has the same amount levelas j^Ts,xx and j^Ts,yy. We also find a net linear spin current density, which has peaks at the center of quantum wire. The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.  相似文献   

3.
Using the perturbation method,we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling.The heat generated by the spin current is calculated.With the increase of the width of the quantum wire,the spin current and the heat generated both exhibit period oscillations with equal amplitudes.When the quantum-channel number is doubled,the oscillation periods of the spin current and of the heat generated both decrease by a factor of 2.For the spin current j s,xy,the amplitude increases with the decrease of the quantum channel;while the amplitude of the spin current j s,yx remains the same.Therefore we conclude that the effect of the quantum-channel number on the spin current j s,xy is greater than that on the spin current j s,yx.The strength of the Rashba spin-orbit coupling is tunable by the gate voltage,and the gate voltage can be varied experimentally,which implies a new method of detecting the spin current.In addition,we can control the amplitude and the oscillation period of the spin current by controlling the number of the quantum channels.All these characteristics of the spin current will be very important for detecting and controlling the spin current,and especially for designing new spintronic devices in the future.  相似文献   

4.
赵华  廖文虎  周光辉 《中国物理》2007,16(6):1748-1752
We investigate theoretically the electron transport for a two-level quantum channel (wire) with Rashba spin--orbit coupling under the irradiation of a longitudinally-polarized external laser field at low temperatures. Using the method of equation of motion for Keldysh nonequilibrium Green function, we examine the time-averaged spin polarized conductance for the system with photon polarization parallel to the wire direction. By analytical analysis and a few numerical examples, the interplay effects of the external laser field and the Rashba spin--orbit coupling on the spin-polarized conductance for the system are demonstrated and discussed. It is found that the longitudinally-polarized laser field can adjust the spin polarization rate and produce some photon sideband resonances of the conductance for the system.  相似文献   

5.
宋占锋  王亚东  邵慧彬  孙志刚 《中国物理 B》2011,20(7):77302-077302
Using the perturbation method, we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin—orbit coupling. The heat generated by the spin current is calculated. With the increase of the width of the quantum wire, the spin current and the heat generated both exhibit period oscillations with equal amplitudes. When the quantum-channel number is doubled, the oscillation periods of the spin current and of the heat generated both decrease by a factor of 2. For the spin current js,xy, the amplitude increases with the decrease of the quantum channel; while the amplitude of the spin current js,yx remains the same. Therefore we conclude that the effect of the quantum-channel number on the spin current js,xy is greater than that on the spin current js,yx. The strength of the Rashba spin—orbit coupling is tunable by the gate voltage, and the gate voltage can be varied experimentally, which implies a new method of detecting the spin current. In addition, we can control the amplitude and the oscillation period of the spin current by controlling the number of the quantum channels. All these characteristics of the spin current will be very important for detecting and controlling the spin current, and especially for designing new spintronic devices in the future.  相似文献   

6.
刘平  熊诗杰 《中国物理 B》2009,18(12):5414-5419
The influence of electron--phonon (EP) scattering on spin polarization of current output from a mesoscopic ring with Rashba spin--orbit (SO) interaction is numerically investigated. There are three leads connecting to the ring at different positions; unpolarized current is injected to one of them, and the other two are output channels with different bias voltages. The spin polarization of current in the outgoing leads shows oscillations as a function of EP coupling strength owing to the quantum interference of EP states in the ring region. As temperature increases, the oscillations are evidently suppressed, implying decoherence of the EP states. The simulation shows that the magnitude of polarized current is sensitive to the location of the lead. The polarized current depends on the connecting position of the lead in a complicated way due to the spin-sensitive quantum interference effects caused by different phases accumulated by transmitting electrons with opposite spin states along different paths.  相似文献   

7.
We have studied the spin-dependent electron transmission through a quantum well driven by both dipole-type and homogeneous oscillating fields. The numerical evaluations show that Dresselhaus spin-orbit coupling induces the splitting of asymmetric Fano-type resonance peaks in the conductivity, in which the dipole modulation and the homogeneous modulation are equivalent. Therefore, we predict that the dipole-type oscillation, which is more practical in the experimental setup, can be used to realize the tunable spin filters by adjusting the field oscillation-frequency and the amplitude as well.  相似文献   

8.
李玉现 《中国物理快报》2008,25(10):3739-3741
Spin-dependent Andreev reflection and spin polarization through a diluted magnetic semiconductor quantum wire coupled to normal metallic and superconductor electrodes are investigated using scattering theory. When the spin-orbit coupling is considered, more Andreev conductance steps appear at the same Fermi energy. Magnetic semiconductor quantum wire separates the spin-up and spin-down electrons. The Fermi energy, at which different- spin-state electrons begin to separate, becomes lower due to the effect of the spin-orbit interaction. The spin filter effect can be measured more easily by investigating the Andreev conductance than by investigating the normal conductance.  相似文献   

9.
《中国物理 B》2021,30(5):57201-057201
Valley filter is a promising device for producing valley polarized current in graphene-like two-dimensional honeycomb lattice materials. The relatively large spin–orbit coupling in silicene contributes to remarkable quantum spin Hall effect, which leads to distinctive valley-dependent transport properties compared with intrinsic graphene. In this paper,quantized conductance and valley polarization in silicene nanoconstrictions are theoretically investigated in quantum spinHall insulator phase. Nearly perfect valley filter effect is found by aligning the gate voltage in the central constriction region. However, the valley polarization plateaus are shifted with the increase of spin–orbit coupling strength, accompanied by smooth variation of polarization reversal. Our findings provide new strategies to control the valley polarization in valleytronic devices.  相似文献   

10.
郝翔  朱士群 《理论物理通讯》2010,53(6):1083-1086
The transmission of quantum states in the anisotropic Heisenberg XXZ chain model with three-spin exchange interaction is studied. The average fidelity is used to evaluate the state transfer. It is found that quantum communication can be enhanced by the anisotropic coupling and multiple spin interaction. Such spin model can reduce the time required for the perfect state transmission where the fidelity is unity. The maximally entangled Bell states can be generated and separated from the whole quantum systems.  相似文献   

11.
This paper investigates the effect of Dresselhaus spin--orbit coupling on the spin-transport properties of ferromagnet/insulator/semiconductor/insulator/ferromagnet double-barrier structures. The influence of the thickness of the insulator between the ferromagnet and the semiconductor on the polarization is also considered. The obtained results indicate that (i) the polarization can be enhanced by reducing the insulator layers at zero temperature, and (ii) the tunnelling magnetoresistance inversion can be illustrated by the influence of the Dresselhaus spin--orbit coupling effect in the double-barrier structure. Due to the Dresselhaus spin--orbit coupling effect, the tunnelling magnetoresistance inversion occurs when the energy of a localized state in the barrier matches the Fermi energy EF of the ferromagnetic electrodes.  相似文献   

12.
Spin transport properties in a non-uniform quantum wire (QW) in the presence of both the Rashba and Dresselhaus spin–orbit couplings (SOCs) is investigated by using the non-equilibrium Green's function (NEGF) method combined with the Landauer Büttiker formalism. It is found that such a non-uniform quantum wire exhibits considerable spin polarization in its conductance in the influence of both the Rashba and Dresselhaus SOCs, and that the two SOCs' strengths strongly affect both the magnitude and sign of the electron spin polarization. Interestingly, the Rashba and Dresselhaus SOCs play the same modulating role in the electron spin polarization. The proposed nanostructure can potentially be utilized to devise an all-electrical spintronic device.  相似文献   

13.
We use numerical simulations to investigate the spin Hall effect in quantum wires in the presence of both Rashba and Dresselhaus spin-orbit coupling. We find that the intrinsic spin Hall effect is highly anisotropic with respect to the orientation of the wire, and that the nature of this anisotropy depends strongly on the electron density and the relative strengths of the Rashba and Dresselhaus spin-orbit couplings. In particular, at low densities, when only one subband of the quantum wire is occupied, the spin Hall effect is strongest for electron momentum along the [N110] axis, which is the opposite of what is expected for the purely 2D case. In addition, when more than one subband is occupied, the strength and anisotropy of the spin Hall effect can vary greatly over relatively small changes in electron density, which makes it difficult to predict which wire orientation will maximize the strength of the spin Hall effect. These results help to illuminate the role of quantum confinement in spin-orbit-coupled systems, and can serve as a guide for future experimental work on the use of quantum wires for spin-Hall-based spintronic applications.  相似文献   

14.
We report a theoretical study of the equilibrium spin current flowing in a quantum dot system. Two electrodes are the two-dimensional electron gas with Rashba or Dresselhaus spin-orbital interaction. By using the Keldysh Green's function technique, we demonstrated that a nonzero spin current can flow in the system without bias. At the weak coupling between electrodes and the quantum dot, the spin current is approximately proportional to the cross product of two average pseudo-magnetizations in two electrodes, which agrees with the result of the linear response theory; whereas at the opposite case, the strong coupling between the quantum dot and electrodes can lead to a non-sinusoidal behavior of the equilibrium spin current. These behaviors of the equilibrium spin current are similar to the Josephson current.  相似文献   

15.
HAO Ya-Fei 《理论物理通讯》2012,57(6):1071-1075
We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field. The quantum well geometry dependence of spin splitting is studied with the Rashba and the Dresselhaus spin-orbit coupling included. The results show that the structure of quantum well plays an important role in spin splitting. The Rashba and the Dresselhaus spin splitting in four asymmetric quantum wells are quite different. The origin of the distinction is discussed in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号