首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
聂海  张波  唐先忠 《物理学报》2007,56(1):263-267
在新型空穴传输聚合物聚TPD(PTPD)中掺杂电子传输有机小分子荧光染料Rubrene制成薄膜器件.考察了不同掺杂浓度以及不同薄膜厚度器件的电致发光性能,结果表明存在杂质陷阱效应.基于固体中双注入理论,假设杂质陷阱限制在分立能级上,通过求解泊松方程,得到了掺杂器件J-V特性解析模型.该模型的计算值与实验结果一致.  相似文献   

2.
王鹏  郭闰达  陈宇  岳守振  赵毅  刘式墉 《物理学报》2013,62(8):88801-088801
基于传统的体异质结有机太阳能电池结构, 对结构中的混合层改用梯度掺杂的方法, 在AM1.5, 100 mW/cm2光照下, 使得器件的短路电流由原来的7.72 mA/cm2提高到了9.18 mA/cm2, 相应的光电转换效率提高了25%. 器件性能的提升归因于梯度掺杂体系的引入使得体异质结混合层中同一材料分子之间形成了较好的连续网络结构, 降低了器件的串联电阻, 提高了电极对载流子的收集效率, 从而提高了器件的光电转换效率. 关键词: 有机太阳能电池 体异质结 梯度掺杂  相似文献   

3.
冯秋菊  蒋俊岩  唐凯  吕佳音  刘洋  李荣  郭慧颖  徐坤  宋哲  李梦轲 《物理学报》2013,62(5):57802-057802
利用简单的化学气相沉积方法, 首先在n-Si衬底上生长Sb掺杂p-ZnO薄膜, 并在此基础上制作了p-ZnO/n-Si异质结发光二极管.对制备的Sb掺杂ZnO薄膜 在800 ℃下进行了热退火处理, 发现退火后样品的晶体质量和表面形貌都得到明显提高, 并且薄膜呈现的电导类型为p型, 载流子浓度为9.56× 1017 cm-3. 此外, 该器件还表现出良好的整流特性, 正向开启电压为4.0 V, 反向击穿电压为9.5 V. 在正向45 mA的注入电流条件下, 器件实现了室温下的电致发光. 这说明较高质量的ZnO薄膜也可以通过简单的化学气相沉积方法来实现, 这为ZnO基光电器件的材料制备提供了一种简单可行的方法. 关键词: CVD p-ZnO 异质结 电致发光  相似文献   

4.
众所周知, 双极型晶体管的设计主要是基区的设计. 一般而言, 基区的杂质分布是非均匀的. 本文首先研究了非均匀的杂质高斯分布对器件温度分布、增益和截止频率的温度特性的影响, 发现增益和截止频率具有正温度系数, 体内温度较高. 随后研究了基区Ge组分分布对这些器件参数的影响. 均匀Ge组分分布和梯形Ge组分分布的SiGe 异质结双极型晶体管增益和截止频率具有负温度系数, 具有较好的体内温度分布. 进一步的研究表明, 具有梯形Ge组分分布的SiGe 异质结双极型晶体管, 由于Ge组分缓变引入了少子加速电场, 不但使它的增益和截止频率具有较高的值, 而且保持了较弱的温度敏感性, 在增益、特征频率大小及其温度敏感性、体内温度分布达到了很好的折中.  相似文献   

5.
A method of non-uniform finger spacing is proposed to enhance thermal stability of a multiple finger power SiGe heterojunction bipolar transistor under different power dissipations. Temperature distribution on the emitter fingers of a multi-finger SiGe heterojunction bipolar transistor is studied using a numerical electro-thermal model. The results show that the SiGe heterojunction bipolar transistor with non-uniform finger spacing has a small temperature difference between fingers compared with a traditional uniform finger spacing heterojunction bipolar transistor at the same power dissipation. What is most important is that the ability to improve temperature non-uniformity is not weakened as power dissipation increases. So the method of non-uniform finger spacing is very effective in enhancing the thermal stability and the power handing capability of power device. Experimental results verify our conclusions.  相似文献   

6.
Bulk heterojunction organic solar cells(OSCs) based on the blend of poly(2-methoxy-5(2'-ethyl-hexyloxy)-1,4-phenylenevinylene(MEH-PPV) and [6,6]-phenyl C61 butyric acid methyl ester(PCBM) with different weight ratios(from 1:3 to 1:5) have been fabricated and the effect of annealing treatment on the performance of OSCs has also been studied.Experimental results point to the best optimized doping concentration 1:4 for MEH-PPV:PCBM.Furthermore,it is found that the devices with annealing treatment at 150℃ with ...  相似文献   

7.
Searching for high-performance and cost-effective catalysts is of particular importance for the practical electrocatalysis applications. The heterojunctions with components in different dimensions show unique physical and chemical properties, which can offer large space for rational design of electrocatalysts. In this paper, we firstly reviewed recently related works, and then proposed a few perspectives on exploring heterojunction for electrocatalysis applications.  相似文献   

8.
SiC is a highly stable material in bulk. On the other hand, alloys of silicon and carbon at nanoscale length are interesting from both technological as well fundamental view point and are being currently synthesized by various experimental groups (Truong et. al., 2015 [26]). In the present work, we identify a well-known silicon cluster viz., Si10 and dope it sequentially with carbon atoms. The evolution of electronic structure (spin state and the structural properties) on doping, the charge redistribution and structural properties are analyzed. It is interesting to note that the ground state SiC clusters prefer to be in the lowest spin state. Further, it is seen that carbon atoms are the electron rich centres while silicon atoms are electron deficient in every SiC alloy cluster. The carbon–carbon bond lengths in alloy clusters are equivalent to those seen in fullerene molecules. Interestingly, the carbon atoms tend to aggregate together with silicon atoms surrounding them by donating the charge. As a consequence, very few Si–Si bonds are noted with increasing concentrations of C atoms in a SiC alloy. Physical and chemical stability of doped clusters is studied by carrying out finite temperature behaviour and adsorbing O2 molecule on Si9C and Si8C2 clusters, respectively.  相似文献   

9.
最近,旋涂法制备的钙钛矿/平面硅异质结高效叠层太阳电池引起人们广泛关注,主要原因是相比于绒面硅衬底制备的钙钛矿/硅叠层太阳电池,其制备工艺简单、制备成本低且效率高.对于平面a-Si:H/c-Si异质结电池, a-Si:H/c-Si界面的良好钝化是获得高转换效率的关键,进而决定了钙钛矿/硅异质结叠层太阳电池的性能.本文主要从硅片表面处理、a-Si:H钝化层和P型发射极等方面展开研究,通过对硅片表面的氢氟酸(HF)浸泡时间和氢等离子体预处理气体流量、a-Si:H钝化层沉积参数、钝化层与P型发射极(I/P)界面富氢等离子体处理的综合调控,获得了相应的优化工艺参数.对比研究了p-a-Si:H和p-nc-Si:H两种缓冲层材料对I/P界面的影响,其中高电导、宽带隙的p-nc-Si:H缓冲层既能够降低I/P界面的缺陷态,又可以增强P型发射层的暗电导率,提高了前表面场效应钝化效果.通过上述优化,制备出最佳的P-type emitter layer/aSi:H(i)/c-Si/a-Si:H(i)/N-type layer (inip)结构样品的少子寿命与implied-Voc分别达到2855μs和709 mV,表现出良好的钝化效果.应用于平面a-Si:H/c-Si异质结太阳电池,转换效率达到18.76%,其中开路电压达到681.5 mV,相对于未优化的电池提升了34.3 mV.将上述平面a-Si:H/c-Si异质结太阳电池作为底电池,对应的钙钛矿/硅异质结叠层太阳电池的开路电压达到1780 mV,转换效率达到21.24%,证明了上述工艺优化能够有效地改善叠层太阳电池中的硅异质结底电池的钝化及电池性能.  相似文献   

10.
We investigate the mechanism for the improvement of p-type doping efficiency in Mg-Al0.14Ga0.86N/GaN superlattices(SLs).It is shown that the hole concentration of SLs increases by nearly an order of magnitude,from 1.1×1017 to 9.3×1017cm-3,when an AlN interlayer is inserted to modulate the strains.Schro¨dinger-Poisson self-consistent calculations suggest that such an increase could be attributed to the reduction of donor-like defects caused by the strain modulation induced by the AlN interlayer.Additionally,the donor-acceptor pair emission exhibits a remarkable decrease in intensity of the cathodoluminescence spectrum for SLs with an AlN interlayer.This supports the theoretical calculations and indicates that the strain modulation of SLs could be beneficial to the donor-like defect suppression as well as the p-type doping efficiency improvement.  相似文献   

11.
In this study,we investigate the influence of doping on the charge transfer and device characteristics parameters in the bulk heterojunction solar cells based on poly(3-hexylthiophene)(P3HT) and a methanofuUerene derivative(PCBM).Organic semiconductors are also known to be not pure and they have defects and impurities,some of them are being charged and act as p-type or n-type dopants.Calculations of the solar cell characteristics parameters versus the p-doping level have been done at three different n-dopings(N_d) that consist of 5 × 10~(17) cm~(-3),10~(18) cm~(-3),and 5 × 10~(18) cm~(-3).We perform the analysis of the doping concentration through the drift-diffusion model,and calculate the current and voltage doping dependency.We find that at three different n-dopant levels,optimum p-type doping is about N_p = 6 × 10~(18) cm~(-3).Simulation results have shown that by increasing doping level,V_(oc) monotonically increases by doping.Cell efficiency reaches its maximum at somewhat higher doping as FF has its peak at N_p = 3 × 10~(18) cm~(-3).Moreover,this paper demonstrates that the optimum value for the p-doping is about N_p = 6 × 10~(18) cm~(-3) and optimum value for n-dopant is N_d = 10~(18) cm~(-3),respectively.The simulated results confirm that doping considerably affects the performance of organic solar cells.  相似文献   

12.
We present series of strategies to enhance efficiency of ZnO nanorods based organic/inorganic solar cells with spin-coated P3HT:PCBM blend as active layer. The performance of the as-fabricated devices is improved by controlling the size of ZnO nanorods, annealing temperature and time of active layer, surface modification of ZnO with PSBTBT. Optimized device of ITO/ZnO nanorod/P3HT:PCBM/Ag device with PSBTBT surface modification and air exposure reaches an efficiency of 2.02% with a short-circuit current density, open-circuit voltage and fill factor of 13.23 mA cm−2, 0.547 V and 28%, respectively, under AM 1.5 irradiation of 100 mW m−2, the increase in efficiency is 7-fold of the PSBTBT surface modified ITO/ZnO nanorods/P3HT:PCBM/Ag device compared with the unmodified one, which is own to the increased interface contact, expanded light absorption, tailored band alignment attributed to PSBTBT. We found exposure to air and surface modification is crucial to improve the device performance, and we discussed the mechanisms that affect the performance of the devices in detail.  相似文献   

13.
We investigated the annealing effect on solution processed small organic molecule organic films, which were annealed with various conditions. It was found that the densities of the spin-coated (SC) films increased and the surface roughness decreased as the annealing temperature rose. We fabricated corresponding organic light emitting diodes (OLEDs) by spin coating on the same annealing conditions. The solution processed OLEDs show the considerable efficiency and stability, which were prior or equivalent to the vacuum-deposited (VD) counterparts. Our research shows that annealing process plays a key role in prolonging the lifetime of solution processed small molecule OLEDs, and the mechanism for the improvement of the device performance upon annealing was also discussed.  相似文献   

14.
A top-contact organic field-effect transistor(OFET) is fabricated by adopting a pentacene/1,1’-bis(di-4tolylaminophenyl) cyclohexane(TAPC) heterojunction structure and inserting an MoO3 buffer layer between the TAPC organic semiconductor layer and the source/drain electrode.The performances of the heterojunction OFET,including output current,field-effect mobility,and threshed voltage,are all significantly improved by introducing the MoO3 thin buffer layer.The performance improvement of the modified heterojunction OFET is attributed to a better contact formed at the Au/TAPC interface due to the MoO3 thin buffer layer,thereby leading to a remarkable reduction of the contact resistance at the metal/organic interface.  相似文献   

15.
汪津  姜文龙  华杰  王广德  韩强  常喜  张刚 《物理学报》2010,59(11):8212-8217
制备结构为ITO/Co/NPB/Alq3/LiF/Al的有机发光器件,测量了室温下磁场对器件发光效率和电流的影响.发现磁场强度小于80 mT时,器件发光效率随磁场强度的增加而增大,最大为18.8%,随磁场强度的继续增加发光效率的增强趋于饱和.效率的增加是Co的自旋极化的注入和磁场效应共同作用的结果,其中自旋极化注入起主要作用.在磁场强度小于60 mT时电流随磁场增强而增加,最大为6.9%,随磁场强度的进一步增加电流的增加有所减弱.产生这种现象的原因可归结为磁场相关的单线态极化子对的解 关键词: 有机电致发光 自旋极化 磁场效应  相似文献   

16.
陈庆玲  戴振宏  刘兆庆  安玉凤  刘悦林 《物理学报》2016,65(13):136101-136101
采用基于密度泛函理论的第一性原理计算方法研究了双层h-BN/Graphene的稳定性及其掺杂特性.研究发现,双层h-BN/Graphene能带结构在K点处有一个小的带隙,在费米能处有类Graphene的线性色散关系.通过施加应变和掺杂来调节带隙,发现掺杂后费米能级附近引入的新能级,主要是N原子的贡献,掺杂后的Na原子和N,C之间存在电荷转移,材料转变为金属性.电荷的转移、载流子密度的增加,在电子元器件中有重要的应用前景.  相似文献   

17.
Fabrication of ambipolar organic field-effect transistors (OFETs) is essential for the achievement of an organic complementary logic circuit. Ambipolar transports in OFETs with heterojunction structures are realized. We select pentacene as a P-type material and N,N'-bis(4-trifluoromethylben-zyl)perylene-3,4,9,10-tetracarboxylic diimide (PTCDI-TFB) as a n-type material in the active layer of the OFETs. The field-effect transistor shows highly air-stable ambipolar characteristics with a field-effect hole mobility of 0.18~cm2/(V.s) and field-effect electron mobility of 0.031~cm2/(V.s). Furthermore the mobility only slightly decreases after being exposed to air and remains stable even for exposure to air for more than 60 days. The high electron affinity of PTCDI-TFB and the octadecyltrichlorosilane (OTS) self-assembly monolayer between the SiO2 gate dielectric and the organic active layer result in the observed air-stable characteristics of OFETs with high mobility. The results demonstrate that using the OTS as a modified gate insulator layer and using high electron affinity semiconductor materials are two effective methods to fabricate OFETs with air-stable characteristics and high mobility.  相似文献   

18.
We investigated the structural; optical and electrical properties of ZnO thin films as the n-type semiconductor for silicon a-Si:H/Si heterojunction photodiodes. The ZnO film forms the front contact of the super-strata solar cell and has to exhibit good electrical (high conductivity) and optical (high transmittance) properties. In this paper we focused our attention on the influence of doping on device performance. The results show that the X-ray diffraction (XRD) spectra revealed a preferred orientation of the crystallites along c-axis. SEM images show that all films display a granular, polycrystalline morphology and the ZnO:Al exhibits a better grain uniformity. The transmittance of the doped films was found to be higher when compared to undoped ZnO. A low resistivity of the order of 2.8 × 10−4 Ω cm is obtained for ZnO:Al using 0.4 M concentration of zinc acetate. The photoluminescence (PL) spectra exhibit a blue band with two peaks centered at 442 nm (2.80 eV) and 490 nm (2.53 eV). It is noted that after doping the ZnO films a shift of the band by 22 nm (0.15 eV) is recorded and a high luminescence occurs when using Al as a dopant. Dark IV curves of ZnO/a-Si:H/Si structure showed large difference, which means there is a kind of barrier to current flow between ZnO and a-Si:H layer. Doping films was applied and the turn-on voltages are around 0.6 V. Under reverse bias, the current of the ZnO/a-Si:H/Si heterojunction is larger than that of ZnO:Al/a-Si:H/Si. The improvement with ZnO:Al is attributed to a higher number of generated carriers in the nanostructure (due to the higher transmittance and a higher luminescence) that increases the probability of collisions.  相似文献   

19.
The structural modification and properties of polymeric materials are of utmost importance in deciding their applications. In the present study, the synthesis of polyaniline (PANI) has been carried out via chemical oxidation in acidic medium by potassium-dichromate and the yield of synthesized polyaniline was found to be 75-80%. The copper per chlorate tetrabenzonitrile salt (CuClO4·4BN) used for chemical doping in synthesized polyaniline is stable in organic solvent like acetonitrile (AN) and benzonitrile (BN). The effect of Cu+1 oxidation state (dopant) in polyaniline has been characterized by FTIR. Electrical and dielectric measurements show the decrease in the intensity of the Cu+1 salt signal and the appearance of a radical signal due to the formation of oxidative coupled in polymeric species. Electrical and dielectric properties of doped polyaniline samples show significant changes due to the effect of dopant (CuClO4·4BN). It is observed that the conductivity is contributing both by formation of ionic complex and particularly dominated by electronic due to the mobility of charge carriers along the polyaniline chain.  相似文献   

20.
金冬月  张万荣  陈亮  付强  肖盈  王任卿  赵昕 《中国物理 B》2011,20(6):64401-064401
The thermal resistance matrix including self-heating thermal resistance and thermal coupling resistance is presented to describe the thermal effects of multi-finger power heterojunction bipolar transistors. The dependence of thermal resistance matrix on finger spacing is also investigated. It is shown that both self-heating thermal resistance and thermal coupling resistance are lowered by increasing the finger spacing, in which the downward dissipated heat path is widened and the heat flow from adjacent fingers is effectively suppressed. The decrease of self-heating thermal resistance and thermal coupling resistance is helpful for improving the thermal stability of power devices. Furthermore, with the aid of the thermal resistance matrix, a 10-finger power heterojunction bipolar transistor (HBT) with non-uniform finger spacing is designed for high thermal stability. The optimized structure can effectively lower the peak temperature while maintaining a uniformity of the temperature profile at various biases and thus the device effectively may operate at a higher power level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号