首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
刘悦  赵璐璐  周艳文 《中国物理 B》2017,26(11):115201-115201
A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on electron heating. The model is solved numerically by a finite difference method. The numerical results show that the discharge process may be divided into three stages: the growing rapidly stage, the growing slowly stage, and the steady stage. In the steady stage,the maximal electron density increases as the driving frequency increases. The results show that the discharge region has three parts: the powered electrode sheath region, the bulk plasma region and the grounded electrode sheath region. In the growing rapidly stage(at 18 μs), the results of the cycle-averaged electric field, electron temperature, electron density, and electric potentials for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are compared, respectively. Furthermore,the results of cycle-averaged electron pressure cooling, electron ohmic heating, electron heating, and electron energy loss for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are discussed, respectively. It is also found that the effect of the cycle-averaged electron pressure cooling on the electrons is to "cool" the electrons; the effect of the electron ohmic heating on the electrons is always to "heat" the electrons; the effect of the cycle-averaged electron ohmic heating on the electrons is stronger than the effect of the cycle-averaged electron pressure cooling on the electrons in the discharge region except in the regions near the electrodes. Therefore, the effect of the cycle-averaged electron heating on the electrons is to "heat" the electrons in the discharge region except in the regions near the electrodes. However, in the regions near the electrodes, the effect of the cycle-averaged electron heating on the electron is to "cool" the electrons. Finally, the space distributions of the electron pressure cooling the electron ohmic heating and the electron heating at 1/4 T, 2/4 T, 3/4 T, and 4/4 T in one RF-cycle are presented and compared.  相似文献   

2.
A self-consistent fluid model, which incorporates density and flux balances of electrons, ions, neutrals and nanoparticles, electron energy balance, and Poisson's equation, is employed to investigate the capacitively coupled silane discharge modulated by dual-frequency electric sources. In this discharge process, nanoparticles are formed by a successive chemical reactions of anion with silane. The density distributions of the precursors in the dust particle formation are put forward, and the charging, transport and growth of nanoparticles are simulated. In this work, we focus our main attention on the influences of the high-frequency and low-frequency voltage on nanoparticle densities, nanoparticle charge distributions in both the bulk plasma and sheath region.  相似文献   

3.
The inflexion point of electron density and effective electron temperature curves versus radio-frequency (RF) bias voltage is observed in the H mode of inductively coupled plasmas (ICPs). The electron energy probability function (EEPF) evolves first from a Maxwellian to a Druyvesteyn-like distribution, and then to a Maxwellian distribution again as the RF bias voltage increases. This can be explained by the interaction of two distinct bias-induced mechanisms, that is: bias- induced electron heating and bias-induced ion acceleration loss and the decrease of the effective discharge volume due to the sheath expansion. Furthermore, the trend of electron density is verified by a fluid model combined with a sheath module.  相似文献   

4.
赵璐璐  刘悦 《中国物理 B》2017,26(12):125201-125201
A self-consistent fluid model for dual radio frequency argon capacitive glow discharges at low pressure is established.Numerical results are obtained by using a finite difference method to solve the model numerically, and the results are analyzed to study the effect of gas pressure on the plasma characteristics. It shows that when the gas pressure increases from 0.3 Torr(1 Torr = 1.33322×10~2 Pa) to 1.5 Torr, the cycle-averaged plasma density and the ionization rate increase;the cycle-averaged ion current densities and ion energy densities on the electrodes electrode increase; the cycle-averaged electron temperature decreases. Also, the instantaneous electron density in the powered sheath region is presented and discussed. The cycle-averaged electric field has a complex behavior with the increasing of gas pressure, and its changes take place mainly in the two sheath regions. The cycle-averaged electron pressure heating, electron ohmic heating, electron heating, and electron energy loss are all influenced by the gas pressure. Two peaks of the electron heating appear in the sheath regions and the two peaks become larger and move to electrodes as the gas pressure increases.  相似文献   

5.
A Monte Carlo simulation is presented to describe the electron transport behaviours in the nitrogen direct current glow discharge. The energy and angular distributions of the electrons at different positions of the cathode dark space are calculated; their energy and density distribution features throughout the entire discharge are discussed. The influence of molecular vibrational excitation, typical for electron-molecule collisions, has been studied and the elementary process of active species generation has been illustrated. The simulated results reveal that, in the cathode dark space, the high-energy electrons are mainly forward scattering and behave as a high-energy ‘electron beam'. The sharp increase of the number of secondary electrons plays an important role in producing active species at the interface between the cathode dark space and the negative glow region. The vibrational excitation enhances the energy loss of electrons in the negative glow region.  相似文献   

6.
刘相梅  宋远红  王友年 《中国物理 B》2011,20(6):65205-065205
A one-dimensional fluid model is employed to investigate the discharge sustaining mechanisms in the capacitively coupled argon plasmas, by modulating the driving frequency in the range of 40 kHz-60 MHz. The model incorporates the density and flux balance of electron and ion, electron energy balance, as well as Poisson's equation. In our simulation, the discharge experiences mode transition as the driving frequency increases, from the γ regime in which the discharge is maintained by the secondary electrons emitted from the electrodes under ion bombardment, to the α regime in which sheath oscillation is responsible for most of the electron heating in the discharge sustaining. The electron density and electron temperature at the centre of the discharge, as well as the ion flux on the electrode are figured out as a function of the driving frequency, to confirm the two regimes and transition between them. The effects of gas pressure, secondary electron emission coefficient and applied voltage on the discharge are also discussed.  相似文献   

7.
In this paper, a two-dimensional physical model is established in a Hall thruster sheath region to investigate the influences of the electron temperature and the propellant on the sheath potential drop and the secondary electron emission in the Hall thruster, by the particle-in-cell(PIC) method. The numerical results show that when the electron temperature is relatively low, the change of sheath potential drop is relatively large, the surface potential maintains a stable value and the stability of the sheath is good. When the electron temperature is relatively high, the surface potential maintains a persistent oscillation, and the stability of the sheath reduces. As the electron temperature increases, the secondary electron emission coefficient on the wall increases. For three kinds of propellants(Ar, Kr, and Xe), as the ion mass increases the sheath potentials and the secondary electron emission coefficients reduce in sequence.  相似文献   

8.
Based on the fluid theory of plasma, a model is built to study the characteristics of nitrogen discharge at high pressure with induced argon plasma. In the model, species such as electrons, N2+, N4+, Ar+, and two metastable states (N 2(A3∑u+), N2 (a1 ∑u-)) are taken into account. The model includes the particle continuity equation, the electron energy balance equation, and Poisson抯equation. The model is solved with a finite difference method. The numerical results are obtained and used to investigate the effect of time taken to add nitrogen gas and initially-induced argon plasma pressure. It is found that lower speeds of adding the nitrogen gas and varying the gas pressure can induce higher plasma density, and inversely lower electron temperature. At high-pressure discharge, the electron density increases when the proportion of nitrogen component is below 40%, while the electron density will keep constant as the nitrogen component further increases. It is also shown that with the increase of initially-induced argon plasma pressure, the density of charged particles increases, and the electron temperature as well as the electric field decreases.  相似文献   

9.
The dielectric barrier discharge characteristics in helium at atmospheric pressure are simulated based on a one-dimensional fluid model. Under some discharge conditions, the results show that one discharge pulse per half voltage cycle usually appears when the amplitude of external voltage is low, while a glow-like discharge occurs at high voltage. For the one discharge pulse per half voltage cycle, the maximum of electron density appears near the anode at the beginning of the discharge, which corresponds to a Townsend discharge mode. The maxima of the electron density and the intensity of electric field appear in the vicinity of the cathode when the discharge current increases to some extent, which indicates the formation of a cathode-fall region. Therefore, the discharge has a transition from the Townsend mode to the glow discharge mode during one discharge pulse, which is consistent with previous experimental results.  相似文献   

10.
The spatial distributions of the electron density and the mean electron energy of argon radio frequency (rf) glow discharge plasma in a plasma-enhanced chemical vapour deposition (PECVD) system have been investigated using an established movable Langmuir probe. The results indicate that in the axial direction the electron density tends to peak at midway between the two electrodes while the axial variation trend of mean electron energy is different from that of the electron density, the mean electron energy is high near the electrodes. And the mean electron energy near the cathode is much higher than that near the anode. This article focuses on the radial distribution of electron density and mean electron energy. A proposed theoretical model distribution agrees well with the experimental one: the electron density and the mean electron energy both increase from the centre of the glow to the edge of electrodes. This is useful for better understanding the discharge mechanism and searching for a better deposition condition to improve thin film quality.  相似文献   

11.
邓永锋  韩先伟  谭畅 《中国物理 B》2009,18(9):3870-3876
A high-energy electron beam generator is used to generate a plasma in atmosphere. Based on a Monte Carlo toolkit named GEANT4, a model including complete physics processes is established to simulate the passage of the electron beam in air. Based on the model, the characteristics of the electron beam air plasma are calculated. The energy distribution of beam electrons (BEs) indicates that high-energy electrons almost reside in the centre region of the beam, but low-energy electrons always live in the fringe area. The energy deposition is calculated in two cases, i.e., with and without secondary electrons (SEs). Analysis indicates that the energy deposition of SEs accounts for a large part of the total energy deposition. The results of the energy spectrum show that the electrons in the inlet layer of the low-pressure chamber (LPC) are monoenergetic, but the energy spectrum of the electrons in the outlet layer is not pure. The SEs are largely generated at the outlet of the LPC. Moreover, both the energy distribution of BEs and the magnitude of the density of SEs are closely related to the pressure of LPC. Thus, a conclusion is drawn that a low magnitude of LPC pressure is helpful for reducing the energy loss in the LPC and also useful for greatly increasing the secondary electron density in dense air.  相似文献   

12.
A one-dimensional fluid simulation on argon rf glow discharge with varying linearly gas pressure from 1 Torr to 100 Tort is performed. The model based on mass conservation equations for electron and ion under diffusion and mobility approximation, and the electron energy conservation equation is solved numerically by finite volume method. The numerical results show that a uniform plasma with high density can be obtained from rf glow discharge with varying gas pressure, and the density of plasma becomes higher as the gas pressure varies from 1 Tort to 100 Tort. It is also shown that in the range of the gas pressure from 1 Tort to 100 Tort with the slower rate of varying gas pressure, higher density of plasma can be obtained.  相似文献   

13.
It is experimentally demonstrated that a relatively strong ion-rich sheath formed at a fixed negative bias of the grid can be changed to a rather weak ion sheath (sheath potential weakly retards electrons) only by increasing the discharge voltage in the system. At sufficiently high negative grid bias, an increase of discharge voltage enhances the ion collection current at the grid. An explanation is put forward in support of this experimental observation. A slight density enhancement with a fall in plasma electron temperature is also observed with the increasing negative grid bias.  相似文献   

14.
This paper describes a newly designed gamma pulse detector of current mode that uses the scattered electron method. Tungsten is used as the scattering target, an organic thin film scintillator ST401 is used to collect the scattered electrons. The spatial distribution of the electronic energy-flux density is studied by using the MCNP code. The optimization of the target and the thickness of the scintillator are also discussed. The results indicate that the energy response is relatively flat in the range of 0.4 to 5 MeV.  相似文献   

15.
The non-uniform argon dc glow discharge plasma system has been constructed in a very special design to investigate the effects of variable tube radius on plasma parameters. By using isolated computer controlled three couples of a double probe (TCDP) system, the electron temperature, electron density, the reduced electric field, and electron drift velocity are measured at low and intermediate pressures. It is shown that the electron temperature and reduced electric field (density) decreases (increases) as the radius decreases, at low discharge current and pressures. For large radius regions, at high discharge currents and pressures, the behaviour of the plasma parameters of specially reduced electric field change similarly to those in a uniform discharge system.  相似文献   

16.
Air corona discharge is one of the critical problems associated with high-voltage equipment. Investigating the corona mechanism plays a key role in enhancing the electrical insulation performance. An improved self-consistent multi-component two-dimensional plasma hybrid model is presented for the simulation of a direct current atmospheric pressure corona discharge in air. The model is based on plasma hydrodynamic and chemical models, and includes 12 species and 26 reactions. In addition, the photoionization effect is introduced into the model. The simulation on a bar-plate electrode configuration with an inter-electrode gap of 5.0 mm is carried out. The discharge voltage-current characteristics and the current density distribution predicted by the hybrid model agree with the experimental measurements. In addition, the dynamics of volume charged species generation, discharge current waveform, current density distribution at an electrode, charge density, electron temperature, and electric field variations are investigated in detail based on the model. The results indicate that the model can contribute valuable insights into the physics of an air plasma discharge.  相似文献   

17.
石锋  张莉丽  王德真 《中国物理 B》2009,18(3):1177-1180
This paper reports that a simulation of glow discharge in pure helium gas at the pressure of 1.333×103 Pa under a high-voltage nanosecond pulse is performed by using a one-dimensional particle-in-cell Monte Carlo collisions (PIC--MCC) model. Numerical modelling results show that the cathode sheath is much thicker than that of anode during the pulse discharge, and that there exists the phenomenon of field reversal at relative high pressures near the end of the pulse, which results from the cumulative positive charges due to their finite mobility during the cathode sheath expansion. Moreover, electron energy distribution function (EEDF) and ion energy distribution function (IEDF) have been also observed. In the early stage of the pulse, a large amount of electrons can be accelerated above the ionization threshold energy. However, in the second half of the pulse, as the field in bulk plasma decreases and thereafter the reverse field forms due to the excessive charges in cathode sheath, although the plasma density grows, the high energy part of EEDF decreases. It concludes that the large volume non-equilibrium plasmas can be obtained with high-voltage nanosecond pulse discharges.  相似文献   

18.
The variational and diffusion Monte Carlo approaches are used to study the ground-state properties of a hydrogen molecular ion in a spheroidal box. In this work, we successfully treat the zero-point motion of protons in the same formalism with as of electrons and avoid the Born–Oppenheimer approximation in density function theory. The study shows that the total energy increases with the decrease in volume, and that the distance between protons decreases as the pressure increases.Considering the motion of protons, the kinetic energy of the electron is higher than that of the fixed model under the same conditions and increases by 5%. The kinetic energy of the proton is found to be small under high pressure, which is only a fraction of the kinetic energy of the electron.  相似文献   

19.
尹增谦  汪岩  张盼盼  张琦  李雪辰 《中国物理 B》2016,25(12):125203-125203
Characteristics of a direct current(DC) discharge in atmospheric pressure helium are numerically investigated based on a one-dimensional fluid model. The results indicate that the discharge does not reach its steady state till it takes a period of time. Moreover, the required time increases and the current density of the steady state decreases with increasing the gap width. Through analyzing the spatial distributions of the electron density, the ion density and the electric field at different discharge moments, it is found that the DC discharge starts with a Townsend regime, then transits to a glow regime. In addition, the discharge operates in a normal glow mode or an abnormal glow one under different parameters, such as the gap width, the ballast resistors, and the secondary electron emission coefficients, judged by its voltage–current characteristics.  相似文献   

20.
A large-gap uniform discharge is ignited by a coaxial dielectric barrier discharge and burns between a needle anode and a plate cathode under a low sustaining voltage by feeding with flowing argon. The basic aspects of the large-gap uniform discharge are investigated by optical and spectroscopic methods. From the discharge images, it can be found that this discharge has similar regions with glow discharge at low pressure except a plasma plume region. Light emission signals from the discharge indicate that the plasma column is invariant with time, while there are some stochastic pulses in the plasma plume region. The optical emission spectra scanning from 300 nm to 800 nm are used to calculate the excited electron temperature and vibrational temperature of the large-gap uniform discharge. It has been found that the excited electron temperature almost keeps constant and the vibrational temperature increases with increasing discharge current.Both of them decreases with increasing gas flow rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号