首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Combining the advantages of diode-end-pumped Nd: YVO4 and diode-side-pumped Nd: YAG amplifiers, a high average power and high beam quality picosecond laser is designed. The system delivers a picosecond laser with average power of 43.4 W and good beam quality of M2 < 1.7. By focusing the high power picosecond laser in LBO crystal, 532 nm green laser with maximal power of 20.8 W is generated and the conversion efficiency of second-harmonic generation reaches 56.4% when 17.7 W green laser obtained from the fundamental frequency laser with power of 31.4 W and beam quality of M2 < 1.25.  相似文献   

2.
A high-power continuous-wave (CW) diode-end-pumped intracavity-frequency-doubled red laser is reported here. The laser consists of a 0.3 at.% Nd:GdVO4 crystal as laser gain medium, a type II non-critical phase-matched (NCPM) LBO crystal or a type I critical phase-matched (CPM) LBO crystal as frequency-doubler, and a three-mirror-folded cavity. At incident pump power of about 41 W, maximum output powers of 3.8 W and 3 W at 671 nm are obtained with corresponding optical-to-optical conversion efficiency of 9.3% and 7.5%, respectively. During half an hour, the instability of the red beam is less than 3% at output of 3 W.  相似文献   

3.
We report a stable high power and high beam quality diode-side-pumped cw green laser from intracavity frequency-doubled Nd: YAG laser with KTP. By using a L-shaped concave-convex resonator, designed with two Nd:YAG rods birefringence compensation, a large fundamental mode size in the laser crystal and a tight focus in the nonlinear crystal could be obtained simultaneously. The green laser delivers a maximum 532nm output power of 23.2 W. Under 532nm output power of 20.9 W, the beam quality factor is measured to be 4.1, and the fluctuation of the output power is less than 1.4% in an hour.  相似文献   

4.
LD side-pumped dual interconnected V-type quasi-continuous wave green laser has been demonstrated. The two Nd:YAG modules were placed in a plane-concave V-type resonator and a plane-concave straight cavity formed two stable operation beam of the 1064-nm fundamental frequency laser. Through acousto-optic Q-switched and frequency doubling crystal, two double-frequency laser beams arrived at the folded flat mirror, which were unidirectional output by the folded flat mirror at the end. As the pumped current was 50 A, the 532 nm green laser maximum average output power of 206 W at a repetition of 22.4 kHz was achieved with a pulse width of 201 ns and the largest single pulse energy of 9.2 mJ, corresponding to a peak power of 45.8 kW and a double frequency efficiency of 60.2%.  相似文献   

5.
Highly efficient continuous wave (CW) green beam generation by intracavity frequency doubling of a diode side-pumped Nd:YAG laser using a single pump head based on a copper-coated flow tube in a V-shaped cavity geometry has been demonstrated. A maximum 30.5 W of CW green power was obtained at a total diode pumping power of 260 W corresponding to 11.7% conversion efficiency of diode pump power to CW green power and 4.7% conversion efficiency of electrical power to CW green power. The performance of the laser by considering the pump power induced thermal lensing effect and the M2-parameter at the fundamental wavelength has been analyzed.  相似文献   

6.
Thermal effect control is critical to scale the output power of diode end-pumping solid lasers to several watts up and beyond. Diffusion bonding crystal has been demonstrated to be an effective method to relieve the thermal lens for the end-pumping laser crystal. The temperature distribution and thermal lens in Nd:YVO4/YVO4 composite crystal was numerically analyzed and compared with that of Nd:YVO4 crystal in this paper. The end-pumping Nd:YVO4/YVO4 composite crystal laser was set up and tested with z cavity. The maximum output power of 9.87 W at 1064 nm and 6.14 W at 532 nm were obtained at the pumping power of 16.5 W. The highest optical-optical conversion efficiencies were up to 60% at 1064 nm and 40% at 532 nm, respectively.  相似文献   

7.
We report on the generation of high average power, high repetition rate, and picosecond (ps) deep-ultraviolet (DUV) 177.3 nm laser. The DUV laser is produced by second-harmonic generation of a frequency-tripled mode-locked Nd: YVO4 laser (<15 ps, 80 MHz) with KBBF nonlinear crystal. The influence of different fundamental beam diameters on DUV output power and KBBF-SHG conversion efficiency are investigated. Under the 355 nm pump power of 7.5 W with beam diameter of 145 μm, 41 mW DUV output at 177.3 nm is obtained. To our knowledge, this is the highest average power for the 177.3 nm laser. Our results provide a power scaling by three times with respect to previous best works.  相似文献   

8.
We reported the Ho:YAP laser pumped by the Tm:YAP laser. The Ho:YAP laser maximum output power was 4.91 W when the incident power was 10.1 W with the threshold of 2.63 W. The slope efficiency was 63.7%, corresponding to an optical-to-optical efficiency of 48.6%. The Ho:YAP output wavelength was centered at 2118.2 nm with bandwidth of about 1 nm. We estimate the beam quality to be M2 = 1.29.  相似文献   

9.
An efficient continuous-wave (CW) simultaneous dual-wavelength lasing (SDWL) of an LD end-pumped Nd:YAG laser utilizing a quasi-three-level transition at 946 nm and a four-level transition at 1064 nm is reported. A theoretical model has been introduced to determine the threshold conditions for SDWL. The temperature distributions of a Nd:YAG crystal under different pump powers have been analyzed. In the experiments, a CW SDWL output power of 5.12 W at a temperature of 273 K has been achieved with a pump power of 17 W, giving a slope efficiency of 16.36%.  相似文献   

10.
We demonstrate the generation of 515 nm green laser with diode-pumped Yb:YAG thin disk by intracavity frequency doubling of type-I phase-matched LiB3O5(LBO) in a V-type cavity at room temperature. A continuous-wave (CW) output power of 4.44 W at 515 nm was obtained. Optical-optical efficiency of 515 nm green laser is 14.6%. The fluctuation of green laser was 1.6% at the maximum output power in 0.5 h. Thermal lensing effects in Yb:YAG thin disk are investigated too.  相似文献   

11.
We report a compact, conduction-cooled, highly efficient, continuous wave (CW) Nd:YAG slab laser in diode-side-pumped geometry. To achieve high efficiency, a novel laser head for Nd:YAG slab has been developed. For an absorbed pump power of 27.6 W, maximum output power of 10.4 W in multimode and 8.2 W in near-diffraction-limited beam quality has been obtained. Slope and optical-to-optical conversion efficiencies are 45.3% and 37.7% in multimode with beam quality factors (M2) in x and y directions equal to 32 and 8, respectively. TEM00 mode operation was achieved in a hybrid resonator with slope and optical-to-optical conversion efficiencies of 43.2% and 29.7%, respectively. Beam quality factors in x and y directions are ?1.5 and ?1.6 for the whole output power range. The laser radiation was linearly polarized and polarization contrast ratios are >1200:1 in the multimode and 1800:1 in the TEM00 mode operation. In passive Q-switching with Cr4+:YAG crystal of 68% initial transmission, 18 ns pulsewidth has been achieved with an average power of 2 W at a repetition rate of 16 kHz.  相似文献   

12.
In this paper, a stable end-pumped intracavity-frequency-doubled green laser was demonstrated. The interaction length of different pump systems before setting up the experiment was analyzed in order to find out an effective pump system. The experimental results indicate that the pump system in our configuration is beneficial to the efficient CW Nd lasers. A continue-grown composite crystal YVO4/Nd:YVO4, with Nd3+ concentration doping of 0.3 at.%, is used as laser medium. With an incident pump power of 27.5 W, as high as 7.2 W of CW output power at 532 nm was achieved. The optical-to-optical conversion efficiency of 26.2% was obtained in CW modes with a flat-flat cavity design.  相似文献   

13.
Diode-pumped Nd:LGS intracavity-doubled green laser at 532 nm   总被引:1,自引:0,他引:1  
It is reported that efficient continuous-wave (CW) green laser generation at 532 nm in a KTP crystal at type-II phase matching direction performed with a diode-pumped Nd:LGS laser. With incident pump power of 18.2 W, output power of 2.68 W at 532 nm has been obtained using a 5 mm-long KTP crystal. The optical conversion efficiency was up to 14.7%. At the output power level of 2.68 W, the output stability is better than 3.5%. The beam quality M 2 values were equal to 1.33 and 1.19 in X and Y directions, respectively.  相似文献   

14.
High-power continuous wave green radiation has been generated by means of type-II phase-matched frequency doubling in a KTP crystal located in a simple linear cavity incorporating a diode side-pumped Nd:YAG laser module. The cavity was designed to make the fundamental beam radius at the KTP crystal smaller than that at the gain medium, as is required for obtaining large mode volume in Nd:YAG crystal and realizing efficient CW intracavity frequency doubling. Output power of 51.2 W is obtained in the experiment with a diode-to-green optical conversion efficiency of 10.3%. The M2-parameters of the laser are measured at different output powers. For the output power of about 47 W, the power fluctuation is measured less than 1%. The experimental results show that the continuous wave green laser system using this simple linear cavity offers good laser performance and output stability.  相似文献   

15.
Q. Liu  H. Chen  X. Yan  M. Gong 《Optics Communications》2011,284(13):3383-3386
A high power, high beam quality, compact green laser based on dual-rod AO Q-switched resonator was designed, fabricated and tested. The laser provided a maximum 532 nm average power of 36.5 W at a repetition rate of 65 kHz with the beam quality factor of M2 = 1.55 and the optical frequency conversion efficiency from NIR to green laser was as high as 51%. The pulse repetition rate was tunable from 50 kHz to 200 kHz and the overall dimension of the laser was within 500 × 300 × 150 mm3.  相似文献   

16.
A cw diode side-pumped Nd:YAO laser is frequency doubled to 532nm with an intracavity KTP crystal in a Vshaped arrangement, achieving an output power of 40 W corresponding to an optical-optical conversion efficiency of 9.7%. The instabilities and the M2-parameters of the laser are measured at different output powers after the beam is filtered.  相似文献   

17.
We demonstrate a high power continuous wave (CW) diode-side-pumped Nd:YAG laser operating at 1123 nm with a plano-plano configuration. By means of precise coating, a single 1123 nm wavelength is achieved. Under the pump power of 1080 W, an output power of 219.3 W is obtained, which corresponds to an optical-optical conversion efficiency of 20.3%. To the best of our knowledge, this is the highest output power for CW 1123 nm laser based on Nd:YAG crystal.  相似文献   

18.
We reported an actively Q-switched, intracavity Nd3+:YVO4 self-Raman laser at 1176 nm with low threshold and high efficiency. From the extracavity frequency doubling by use of LBO nonlinear crystal, over 3.5 mW, 588 nm yellow laser is achieved. The maximum Raman laser output at is 182 mW with 1.8 W incident pump power. The threshold is only 370 mW at a pulse repetition frequency of 5 kHz. The optical conversion efficiency from incident to the Raman laser is 10%, and 1.9% from Raman laser to the yellow.  相似文献   

19.
We reported the Ho:GdVO4 laser pumped by Tm-doped laser with a fiber Bragg grating. 2.03 W continuous-wave Ho:GdVO4 laser output power is obtained under 10.5 W incident pump power, with the optical-to-optical conversion efficiency and slope efficiency of 19.3% and 32.3%, respectively, at 7 °C. We can see that, the lower the temperature is, the better the laser output character is. The beam quality factor is M2 ∼ 1.29 measured by the traveling knife-edge method.  相似文献   

20.
We have demonstrated a diode-pumped intra-cavity frequency doubling Nd:LuVO4 laser operating at 916 nm with a Z-folded cavity. A 10-mm long LBO crystal, cut for critical type I phase matching at 912 nm, is used for the experiment. A maximum output power of 330 mW at 458 nm has been achieved at pump power of 22 W. The optical-to-optical conversion efficiency and slope efficiency is 1.5% and 2.3%, respectively. The power instability at the maximum output power in 30 min is better than 3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号