共查询到20条相似文献,搜索用时 15 毫秒
1.
The normal inverse Gaussian (NIG) distribution is a promising alternative for modelling financial data since it is a continuous distribution that allows for skewness and fat tails. There is an increasing number of applications of the NIG distribution to financial problems. Due to the complicated nature of its density, estimation procedures are not simple. In this paper we propose Bayesian estimation for the parameters of the NIG distribution via an MCMC scheme based on the Gibbs sampler. Our approach makes use of the data augmentation provided by the mixture representation of the distribution. We also extend the model to allow for modelling heteroscedastic regression situations. Examples with financial and simulated data are provided. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
2.
This article discusses design ideas useful in the development of Markov chain Monte Carlo (MCMC) software. Goals of the design are to facilitate analysis of as many statistical models as possible, and to enable users to experiment with different MCMC algorithms as a research tool. These ideas have been used in YADAS, a system written in the Java language, but are also applicable in other object-oriented languages. 相似文献
3.
While studying various features of the posterior distribution of a vector-valued parameter using an MCMC sample, a subsample is often all that is available for analysis. The goal of benchmark estimation is to use the best available information, that is, the full MCMC sample, to improve future estimates made on the basis of the subsample. We discuss a simple approach to do this and provide a theoretical basis for the method. The methodology and benefits of benchmark estimation are illustrated using a well-known example from the literature. We obtain nearly a 90% reduction in MSE with the technique based on a 1-in-10 subsample and show that greater benefits accrue with the thinner subsamples that are often used in practice. 相似文献
4.
Hidden Markov models are used as tools for pattern recognition in a number of areas, ranging from speech processing to biological sequence analysis. Profile hidden Markov models represent a class of so-called “left–right” models that have an architecture that is specifically relevant to classification of proteins into structural families based on their amino acid sequences. Standard learning methods for such models employ a variety of heuristics applied to the expectation-maximization implementation of the maximum likelihood estimation procedure in order to find the global maximum of the likelihood function. Here, we compare maximum likelihood estimation to fully Bayesian estimation of parameters for profile hidden Markov models with a small number of parameters. We find that, relative to maximum likelihood methods, Bayesian methods assign higher scores to data sequences that are distantly related to the pattern consensus, show better performance in classifying these sequences correctly, and continue to perform robustly with regard to misspecification of the number of model parameters. Though our study is limited in scope, we expect our results to remain relevant for models with a large number of parameters and other types of left–right hidden Markov models. 相似文献
5.
We describe adaptive Markov chain Monte Carlo (MCMC) methods for sampling posterior distributions arising from Bayesian variable selection problems. Point-mass mixture priors are commonly used in Bayesian variable selection problems in regression. However, for generalized linear and nonlinear models where the conditional densities cannot be obtained directly, the resulting mixture posterior may be difficult to sample using standard MCMC methods due to multimodality. We introduce an adaptive MCMC scheme that automatically tunes the parameters of a family of mixture proposal distributions during simulation. The resulting chain adapts to sample efficiently from multimodal target distributions. For variable selection problems point-mass components are included in the mixture, and the associated weights adapt to approximate marginal posterior variable inclusion probabilities, while the remaining components approximate the posterior over nonzero values. The resulting sampler transitions efficiently between models, performing parameter estimation and variable selection simultaneously. Ergodicity and convergence are guaranteed by limiting the adaptation based on recent theoretical results. The algorithm is demonstrated on a logistic regression model, a sparse kernel regression, and a random field model from statistical biophysics; in each case the adaptive algorithm dramatically outperforms traditional MH algorithms. Supplementary materials for this article are available online. 相似文献
6.
This article presents a method for generating samples from an unnormalized posterior distribution f(·) using Markov chain Monte Carlo (MCMC) in which the evaluation of f(·) is very difficult or computationally demanding. Commonly, a less computationally demanding, perhaps local, approximation to f(·) is available, say f**x(·). An algorithm is proposed to generate an MCMC that uses such an approximation to calculate acceptance probabilities at each step of a modified Metropolis–Hastings algorithm. Once a proposal is accepted using the approximation, f(·) is calculated with full precision ensuring convergence to the desired distribution. We give sufficient conditions for the algorithm to converge to f(·) and give both theoretical and practical justifications for its usage. Typical applications are in inverse problems using physical data models where computing time is dominated by complex model simulation. We outline Bayesian inference and computing for inverse problems. A stylized example is given of recovering resistor values in a network from electrical measurements made at the boundary. Although this inverse problem has appeared in studies of underground reservoirs, it has primarily been chosen for pedagogical value because model simulation has precisely the same computational structure as a finite element method solution of the complete electrode model used in conductivity imaging, or “electrical impedance tomography.” This example shows a dramatic decrease in CPU time, compared to a standard Metropolis–Hastings algorithm. 相似文献
7.
We present a multivariate central limit theorem for a general class of interacting Markov chain Monte Carlo algorithms used to solve nonlinear measure-valued equations. These algorithms generate stochastic processes which belong to the class of nonlinear Markov chains interacting with their empirical occupation measures. We develop an original theoretical analysis based on resolvent operators and semigroup techniques to analyze the fluctuations of their occupation measures around their limiting values. 相似文献
8.
In this paper, we introduce the notion of efficiency (consistency) and examine some asymptotic properties of Markov chain Monte Carlo methods. We apply these results to the data augmentation (DA) procedure for independent and identically distributed observations. More precisely, we show that if both the sample size and the running time of the DA procedure tend to infinity, the empirical distribution of the DA procedure tends to the posterior distribution. This is a local property of the DA procedure, which may be, in some cases, more helpful than the global properties to describe its behavior. The advantages of using the local properties are the simplicity and the generality of the results. The local properties provide useful insight into the problem of how to construct efficient algorithms. 相似文献
9.
This paper is concerned with parameter estimation in linear and non-linear Itô type stochastic differential equations using Markov chain Monte Carlo (MCMC) methods. The MCMC methods studied in this paper are the Metropolis–Hastings and Hamiltonian Monte Carlo (HMC) algorithms. In these kind of models, the computation of the energy function gradient needed by HMC and gradient based optimization methods is non-trivial, and here we show how the gradient can be computed with a linear or non-linear Kalman filter-like recursion. We shall also show how in the linear case the differential equations in the gradient recursion equations can be solved using the matrix fraction decomposition. Numerical results for simulated examples are presented and discussed in detail. 相似文献
10.
In recent years efficient methods have been developed for calculating derivative price sensitivities using Monte Carlo simulation. Malliavin calculus has been used to transform the simulation problem in the case where the underlying follows a Markov diffusion process. In this work, recent developments in the area of Malliavin calculus for Levy processes are applied and slightly extended. This allows for derivation of similar stochastic weights as in the continuous case for a certain class of jump-diffusion processes. 相似文献
11.
Complex hierarchical models lead to a complicated likelihood and then, in a Bayesian analysis, to complicated posterior distributions. To obtain Bayes estimates such as the posterior mean or Bayesian confidence regions, it is therefore necessary to simulate the posterior distribution using a method such as an MCMC algorithm. These algorithms often get slower as the number of observations increases, especially when the latent variables are considered. To improve the convergence of the algorithm, we propose to decrease the number of parameters to simulate at each iteration by using a Laplace approximation on the nuisance parameters. We provide a theoretical study of the impact that such an approximation has on the target posterior distribution. We prove that the distance between the true target distribution and the approximation becomes of order O( N?a) with a ∈ (0, 1), a close to 1, as the number of observations N increases. A simulation study illustrates the theoretical results. The approximated MCMC algorithm behaves extremely well on an example which is driven by a study on HIV patients. 相似文献
12.
In recent years, parallel processing has become widely available to researchers. It can be applied in an obvious way in the context of Monte Carlo simulation, but techniques for “parallelizing” Markov chain Monte Carlo (MCMC) algorithms are not so obvious, apart from the natural approach of generating multiple chains in parallel. Although generation of parallel chains is generally the easiest approach, in cases where burn-in is a serious problem, it is often desirable to use parallelization to speed up generation of a single chain. This article briefly discusses some existing methods for parallelization of MCMC algorithms, and proposes a new “pre-fetching” algorithm to parallelize generation of a single chain. 相似文献
13.
This article compares three binary Markov random fields (MRFs) which are popular Bayesian priors for spatial smoothing. These are the Ising prior and two priors based on latent Gaussian MRFs. Concern is given to the selection of a suitable Markov chain Monte Carlo (MCMC) sampling scheme for each prior. The properties of the three priors and sampling schemes are investigated in the context of three empirical examples. The first is a simulated dataset, the second involves a confocal fluorescence microscopy dataset, while the third is based on the analysis of functional magnetic resonance imaging (fMRI) data. In the case of the Ising prior, single site and multi-site Swendsen-Wang sampling schemes are both considered. The single site scheme is shown to work consistently well, while it is shown that the Swendsen-Wang algorithm can have convergence problems. The sampling schemes for the priors are extended to generate the smoothing parameters, so that estimation becomes fully automatic. Although this works well, it is found that for highly contiguous images fixing smoothing parameters to very high values can improve results by injecting additional prior information concerning the level of contiguity in the image. The relative properties of the three binary MRFs are investigated, and it is shown how the Ising prior in particular defines sharp edges and encourages clustering. In addition, one of the latent Gaussian MRF priors is shown to be unable to distinguish between higher levels of smoothing. In the context of the fMRI example we also undertake a simulation study. 相似文献
14.
We prove explicit, i.e., non-asymptotic, error bounds for Markov Chain Monte Carlo methods, such as the Metropolis algorithm. The problem is to compute the expectation (or integral) of f with respect to a measure π which can be given by a density ? with respect to another measure. A straight simulation of the desired distribution by a random number generator is in general not possible. Thus it is reasonable to use Markov chain sampling with a burn-in. We study such an algorithm and extend the analysis of Lovasz and Simonovits [L. Lovász, M. Simonovits, Random walks in a convex body and an improved volume algorithm, Random Structures Algorithms 4 (4) (1993) 359–412] to obtain an explicit error bound. 相似文献
15.
Regression models with a large number of predictors arise in diverse fields of social sciences and natural sciences. For proper interpretation, we often would like to identify a smaller subset of the variables that shows the strongest information. In such a large size of candidate predictors setting, one would encounter a computationally cumbersome search in practice by optimizing some criteria for selecting variables, such as AIC, \(C_{P}\) and BIC, through all possible subsets. In this paper, we present two efficient optimization algorithms vis Markov chain Monte Carlo (MCMC) approach for searching the global optimal subset. Simulated examples as well as one real data set exhibit that our proposed MCMC algorithms did find better solutions than other popular search methods in terms of minimizing a given criterion. 相似文献
16.
Conditional inference eliminates nuisance parameters by conditioning on their sufficient statistics. For contingency tables conditional inference entails enumerating all tables with the same sufficient statistics as the observed data. For moderately sized tables and/or complex models, the computing time to enumerate these tables is often prohibitive. Monte Carlo approximations offer a viable alternative provided it is possible to obtain samples from the correct conditional distribution. This article presents an MCMC extension of the importance sampling algorithm, using a rounded normal candidate to update randomly chosen cells while leaving the remainder of the table fixed. This local approximation can greatly increase the efficiency of the rounded normal candidate. By choosing the number of cells to be updated at random, a balance is struck between dependency in the Markov chain and accuracy of the candidate. 相似文献
17.
We present a new class of interacting Markov chain Monte Carlo methods to approximate numerically discrete-time nonlinear measure-valued equations. These stochastic processes belong to the class of self-interacting Markov chains with respect to their occupation measures. We provide several convergence results for these new methods including exponential estimates and a uniform convergence theorem with respect to the time parameter, yielding what seems to be the first results of this kind for this type of self-interacting models. We illustrate these models in the context of Feynman–Kac distribution semigroups arising in physics, biology and in statistics. 相似文献
18.
In Bayesian analysis of multidimensional scaling model with MCMC algorithm, we encounter the indeterminacy of rotation, reflection and translation of the parameter matrix of interest. This type of indeterminacy may be seen in other multivariate latent variable models as well. In this paper, we propose to address this indeterminacy problem with a novel, offline post-processing method that is easily implemented using easy-to-use Markov chain Monte Carlo (MCMC) software. Specifically, we propose a post-processing method based on the generalized extended Procrustes analysis to address this problem. The proposed method is compared with four existing methods to deal with indeterminacy thorough analyses of artificial as well as real datasets. The proposed method achieved at least as good a performance as the best existing method. The benefit of the offline processing approach in the era of easy-to-use MCMC software is discussed. 相似文献
19.
In this paper we analyse applicability and robustness of Markov chain Monte Carlo algorithms for eigenvalue problems. We restrict our consideration to real symmetric matrices. Almost Optimal Monte Carlo (MAO) algorithms for solving eigenvalue problems are formulated. Results for the structure of both – systematic and probability error are presented. It is shown that the values of both errors can be controlled independently by different algorithmic parameters. The results present how the systematic error depends on the matrix spectrum. The analysis of the probability error is presented. It shows that the close (in some sense) the matrix under consideration is to the stochastic matrix the smaller is this error. Sufficient conditions for constructing robust and interpolation Monte Carlo algorithms are obtained. For stochastic matrices an interpolation Monte Carlo algorithm is constructed. A number of numerical tests for large symmetric dense matrices are performed in order to study experimentally the dependence of the systematic error from the structure of matrix spectrum. We also study how the probability error depends on the balancing of the matrix. 相似文献
20.
In this paper, we propose an original approach to the solution of Fredholm equations of the second kind. We interpret the standard Von Neumann expansion of the solution as an expectation with respect to a probability distribution defined on a union of subspaces of variable dimension. Based on this representation, it is possible to use trans-dimensional Markov chain Monte Carlo (MCMC) methods such as Reversible Jump MCMC to approximate the solution numerically. This can be an attractive alternative to standard Sequential Importance Sampling (SIS) methods routinely used in this context. To motivate our approach, we sketch an application to value function estimation for a Markov decision process. Two computational examples are also provided. 相似文献
|