首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
We have previously shown that a polymeric (PMMA) chip with medium perfusion and integrated heat regulation provides sufficiently precise heat regulation, pH-control and medium exchange to support cell growth for weeks. However, it was unclear how closely the cells cultured in the chip resembled cells cultured in the culture flask. In the current study, gene expression profiles of cells cultured in the chip were compared with gene expression profiles of cells cultured in culture flasks. The results showed that there were only two genes that were differently expressed in cells grown in the cell culture chip compared to cell culture flasks. The cell culture chip could without further modification support cell growth of two other cell lines. Light coming from the microscope lamp during optical recordings of the cells was the only external factor identified, that could have a negative effect on cell survival. Low grade light exposure was however compatible with optical recordings as well as cell viability. These results strongly indicate that a cell culture chip could be constructed that allowed for on-line optical recording of cellular events without affecting the cell culturing condition compared to cell cultured in culture flasks incubated in a dark and CO2 conditioned incubator.  相似文献   

2.
VanDersarl JJ  Xu AM  Melosh NA 《Lab on a chip》2011,11(18):3057-3063
Controlled chemical delivery in microfluidic cell culture devices often relies on slowly evolving diffusive gradients, as the spatial and temporal control provided by fluid flow results in significant cell-perturbation. In this paper we introduce a microfluidic device architecture that allows for rapid spatial and temporal soluble signal delivery over large cell culture areas without fluid flow over the cells. In these devices the cell culture well is divided from a microfluidic channel located directly underneath the chamber by a nanoporous membrane. This configuration requires chemical signals in the microchannel to only diffuse through the thin membrane into large cell culture area, rather than diffuse in from the sides. The spatial chemical pattern within the microfluidic channel was rapidly transferred to the cell culture area with good fidelity through diffusion. The cellular temporal response to a step-function signal showed that dye reached the cell culture surface within 45 s, and achieved a static concentration in under 6 min. Chemical pulses of less than one minute were possible by temporally alternating the signal within the microfluidic channel, enabling rapid flow-free chemical microenvironment control for large cell culture areas.  相似文献   

3.
The culture of cells in a microbioreactor can be highly beneficial for cell biology studies and tissue engineering applications. The present work provides new insights into the relationship between cell growth, cell morphology, perfusion rate, and design parameters in microchannel bioreactors. We demonstrate the long-term culture of mammalian (human foreskin fibroblasts, HFF) cells in a microbioreactor under constant perfusion in a straightforward simple manner. A perfusion system was used to culture human cells for more than two weeks in a plain microchannel (130 microm x 1 mm x 2 cm). At static conditions and at high flow rates (>0.3 ml h(-1)), the cells did not grow in the microchannel for more than a few days. For low flow rates (<0.2 ml h(-1)), the cells grew well and a confluent layer was obtained. We show that the culture of cells in microchannels under perfusion, even at low rates, affects cell growth kinetics as well as cell morphology. The oxygen level in the microchannel was evaluated using a mass transport model and the maximum cell density measured in the microchannel at steady state. The maximum shear stress, which corresponds to the maximum flow rate used for long term culture, was 20 mPa, which is significantly lower than the shear stress cells may endure under physiological conditions. The effect of channel size and cell type on long term cell culture were also examined and were found to be significant. The presented results demonstrate the importance of understanding the relationship between design parameters and cell behavior in microscale culture system, which vary from physiological and traditional culture conditions.  相似文献   

4.
Primack J  Flynn GC  Pan H 《Electrophoresis》2011,32(10):1129-1132
A high-throughput screening assay was developed to quantify major glycan species in the crude mammalian cell culture samples for monoclonal antibodies (mAbs). This method utilizes high-speed microchip electrophoresis separation following a fast sample preparation procedure. Using a 96-well ultra-filtration membrane, interfering species in the cell culture media were efficiently removed as the samples were concentrated. A commercial microchip electrophoresis instrument was used for high-speed separation, allowing each sample to be analyzed in less than 1 min. This method is well suited for the purpose of high-throughput antibody glycan profiling during cell culture expression, including clone selection and cell culture process optimization. The relative levels of high mannose (HM), fucosylated and galactosylated glycan species in the Fc domain can be determined for hundreds of crude cell culture samples in a few hours.  相似文献   

5.
Recombinant Chinese hamster ovary (rCHO) cells have been the most commonly used mammalian host for large-scale commercial production of therapeutic proteins. Although recent advances in 3D culture of rCHO cells is preferred to 2D monolayer culture for highly productive and robust expression of therapeutic proteins, there exists still limitation for efficient protein production. Therefore, a new cell culture system is essentially required for an efficient protein production. Here, we report on a new 3D cell culture system as a spheroid cell culture on the micropattern array for efficient production of protein by CHO cells. Particularly, cocultivation of CHO spheroids with bovine aortic endothelial cells (BAEC) as a feeder layer cells was essential to stably increase a protein production. We investigated the co-culture mechanism of functional enhancement with respect to the cell–cell interactions. Functional comparison between 2D and 3D co-cultures suggested the preferred configuration as spheroid for higher protein production. Specifically, to estimate the effect of respective cell constitution in co-cultured spheroids on the protein production per CHO cell, the number of viable cells in cell proliferation was determined with culture periods. These studies demonstrated the significant role of micropatterned BAEC as a feeder layer for the retained formation of CHO spheroids, resulting in predominantly enhanced production of proteins, although the functional enhancement of CHO cells was obtained by co-culture with BAECs in both 2D and 3D configurations. Thus, heterotypic cell communications that play indispensable roles in increasing CHO functions should be properly obtained in 3D cell configurations. Significantly, these spheroids in the serum-free medium drastically enhanced protein expression level up to sevenfold compared with CHO monospheroids, suggesting that a suitable culture conditions for heterotypic cell–cell interactions would allow improved protein secretion to occur unimpeded.  相似文献   

6.
Integrating 2D culture of adherent mammalian cells with single‐cell western blotting (in situ scWB) uses microfluidic design to eliminate the requirement for trypsin release of cells to suspension, prior to single‐cell isolation and protein analysis. To assay HeLa cells from an attached starting state, we culture adherent cells in fibronectin‐functionalized microwells formed in a thin layer of polyacrylamide gel. To integrate the culture, lysis, and assay workflow, we introduce a one‐step copolymerization process that creates protein‐decorated microwells. After single‐cell culture, we lyse each cell in the microwell and perform western blotting on each resultant lysate. We observe cell spreading after overnight microwell‐based culture. scWB reports increased phosphorylation of MAP kinases (ERK1/2, p38) under hypertonic conditions. We validate the in situ scWB with slab‐gel western blot, while revealing cell‐to‐cell heterogeneity in stress responses.  相似文献   

7.
Lin YH  Yang YW  Chen YD  Wang SS  Chang YH  Wu MH 《Lab on a chip》2012,12(6):1164-1173
This study reports the utilisation of an optically switched dielectrophoretic (ODEP) force for the manipulation and assembly of cell-encapsulating alginate microbeads in a microfluidic perfusion cell culture system for bottom-up tissue engineering. One of the key features of this system is the ODEP force-based mechanism, which allows a commercial projector to be coupled with a computer to manipulate and assemble cell-encapsulating microbeads in an efficient, manageable, and user-friendly manner. Another distinctive feature is the design of the microfluidic cell culture chip, which allows the patterned cell-encapsulating microbeads to be cultivated on site under culture medium perfusion conditions. For demonstrating its application in bottom-up cartilage tissue engineering, chondrocyte-encapsulating alginate microbeads varying in encapsulated cell densities were generated. The manipulation forces associated with operating the alginate microbeads were experimentally evaluated. The results revealed that the measured manipulation forces increased with increases in both the applied electric voltage and the number of cells in the alginate microbeads. Nevertheless, the observed manipulation force was found to be independent of the size of the cell-free alginate microbeads. It can be speculated that the friction force may influence the estimation of the ODEP force within the experimental conditions investigated. In this study, chondrocyte-encapsulating alginate microbeads with three different cell densities were manipulated and assembled in the proposed microfluidic system to form a compact sheet-like cell culture construct that imitates the cell distribution in the cross-section of native articular cartilage. Moreover, the demonstration case also showed that the cell viability of the cultured cells in the microfluidic system remained as high as 96 ± 2%. In this study, four sheet-like cell culture constructs were stacked to create a larger assembled cell culture construct. The cell distribution inside the cell culture construct was further confirmed by a confocal microscopy observation, which showed that the distribution was similar to that in native articular cartilage. As a whole, the proposed system holds great promise as a platform for engineering tissue constructs with easily tunable inner cell distributions.  相似文献   

8.
Lee JM  Kim JE  Kang E  Lee SH  Chung BG 《Electrophoresis》2011,32(22):3133-3137
We developed an integrated microfluidic culture device to regulate embryonic stem (ES) cell fate. The integrated microfluidic culture device consists of an air control channel and a fluidic channel with 4×4 micropillar arrays. We hypothesized that the microscale posts within the micropillar arrays would enable the control of uniform cell docking and shear stress profiles. We demonstrated that ES cells cultured for 6 days in the integrated microfluidic culture device differentiated into endothelial cells. Therefore, our integrated microfluidic culture device is a potentially powerful tool for directing ES cell fate.  相似文献   

9.
We describe a new culture system utilizing the temperature-responsive polymer grafted surface for designing of cell position and layered tissue reconstruction. Organizing of the hepatic tissue structure by controlling the culture system, that is patterned co-culture and layered cell sheet co-culture achieved by moving the cultured cells from the culture surface, resulted in regulation of the hepatocyte function. The technique for cell sheet manipulation would promote the liver tissue engineering in quality.  相似文献   

10.
Melanin has a photo-screening, a biophysical/biochemical and a cosmetic effect. Melanin content of cultured pigmented cells can be measured by spectrophotometry and expressed either as melanin content per cell or melanin content per culture (area). Melanin production can be calculated from melanin content and cell number at the beginning and at the end of a culture using various formulas and expressed as melanin production per cell per day or melanin production per culture per day. Melanin content or production per cell have been used widely to compare melanin content in various cell lines or to compare the melanin content during different stages in the culture (e.g. growing stage and senescent stage). For the evaluation of changes in melanin content and production in a given pigment cell line after treatment with a special chemical, physical or biological stimulator or inhibitor, different parameters used for the evaluation of experimental data can lead to conflicting results. Melanin content per area is determined by melanin content per cell and the number of cells in this area. The biological and cosmetic effects of melanin in vivo are determined mainly by melanin content per area, not melanin content per cell. For example, if melanin content per cell is the same, but the number of cells in a given area is increased after the treatment, then the melanin content per area is also increased. Under this circumstance, the color of skin turns darker and the total antioxidant activity provided by melanin in this area is increased even though the melanin content per cell measured remains the same; therefore, melanin content or production per culture is more important than melanin content or production per cell under this circumstance.  相似文献   

11.
本文采用交替三线性分解(ATLD)和交替归一加权残差三线性分解(ANWE)两种二阶校正方法结合激发发射矩阵荧光光谱对完全不经任何预处理的细胞培养基中的阿霉素进行简单、快速、直接的定量测定.当算法选取组分数为2时,解析得到细胞培养基中阿霉素的平均回收率分别为(100.5±1.8)%和(100.3±1.9)%.在细胞培养基中加入烟酰胺腺嘌呤二核苷酸(NADH)、烟酰胺腺嘌呤二核苷酸磷酸(NADPH)、黄素腺嘌呤二核苷酸(FAD)和黄素单核苷酸(FMN)四种细胞内的自发荧光物后,选取组分数为4时,解析得到细胞培养基中阿霉素的平均回收率分别为(99.1±2.9)%和(99.2±3.1)%.结果表明该分析方法能够准确、快速地直接测定细胞培养基中阿霉素的含量,并且在模拟细胞内荧光干扰环境下可定量测定阿霉素,且能获得令人满意的结果.  相似文献   

12.
Here we report a strategy in which electroanalytical method was used to quantify human hepatic carcinoma cell (HepG2) density in culture media and their interaction with biomolecules. The cyclic voltammogram response of vitamin and amino acids redox mediators containing culture media had shown distinct oxidation peak at ?0.63 V along with a low intensity peak at +0.67 V. Both oxidation and reduction peak current of culture media were gradually decreased with an increase in cell number indicating their role as charge transport barrier at electrode surface. The difference between cathodic and anodic peak potential was also decreased with the addition of cells. The oxidation peak disappeared in CV response, with the addition of optimum cell number in culture media, indicating the adsorption of redox mediators at cell surface. CV response of fetal bovine serum (FBS) containing cell suspension showed presence of reduction and oxidation peaks of culture media in CV. This indicates stronger possibility of binding of serum proteins with cells and release of redox mediators in culture media. The chemical interactions of cells with FBS was further confirmed by the FTIR and UV‐Vis spectroscopy. The viability, adhesion and proliferation responses of the cells were found to be normal. The reported electroanalytical method may be applied in the future for rapid quantification of cell density and confirmation of interactions among cells and biomolecules.  相似文献   

13.
Estimation of the optimal concentrations of residual sugar in medium for a fed-batch culture of Baker’s yeast has been studied and practiced. The concentrations, however, depended on different species and targets of the biomass, which was expected to be made. Kinetic changes of the residual phosphate salt in the medium conformed to a logarithmic process until the fourth hour during an 11-h culture. The parabolic method (see ref. 9 later in article) might be qualified to maintain the concentrations of residual sugar around 0.15 g/L. It was demonstrated that cell growth followed a sigmoid process during a fed-batch culture, because the cells consumed the nutrient with two metabolic pathways, one was for cell conversion and another was for non-cell conversion. With the parabolic method, we can estimate kinetics of cell growth and cell growth rate during the culture.  相似文献   

14.
设计并验证了一种用于细胞三维培养的集成微柱阵列的微流控芯片.芯片由一片聚二甲基硅氧烷(PDMS)沟道片和一片玻璃盖片组成, 在PDMS沟道片上集成了一个由两排微柱阵列围成的细胞培养室和两条用于输送培养基的侧沟道.微柱间距直接影响了芯片的使用性能, 是整个芯片设计的关键.基于数值模拟和实验验证, 本研究对微柱间距进行了优化设计.优化后的微流控芯片可以很好地实现细胞与细胞外基质模拟材料混合液的稳定注入、培养基中营养物质向培养室内的快速扩散和细胞代谢物的及时排出.在芯片上进行了神经干细胞的三维培养, 证明了芯片上构建的细胞体外微环境的稳定性.  相似文献   

15.
Wang  Baoxiu  Ji  Peng  Ma  Yiding  Song  Jianchun  You  Zhengwei  Chen  Shiyan 《Cellulose (London, England)》2021,28(13):8483-8492
Cellulose - Conventional two-dimensional (2D) cell culture is dramatically different from three-dimensional (3D) in vivo environment cells experience in vivo. Here, a new kind of 3D cell culture...  相似文献   

16.
Cell microencapsulation is a promising approach for cell implantation, cell-based gene therapy and large-scale cell culture. For better quality control, it is important to accurately measure the microencapsulated cell viability and proliferation in the culture. A number of assays have been used for this purpose, but limitations arise. In this study, we investigated the feasibility and reliability of resazurin as a cell growth indicator in microencapsulated culture system. According to the experiment data, there was a reversible, time- and dose-dependent growth inhibition as observed for resazurin application in encapsulated cells. A positive relationship was observed between reduction of resazurin and CHO cell number in microcapsule. Moreover, the resazurin assay provided an equivalent result to the commonly used MTT method in determining CHO cell proliferation in APA microcapsule with no notable influence on cell distribution and organization pattern. In conclusion, resazurin assay is offered as a simple, rapid and non-invasive method for in vitro microencapsulated cell viability and proliferation measurement.  相似文献   

17.
Plants have a potential to produce a large number of important metabolites such as pharmaceuticals, food additives, pigments, flavors, fragrances, and fine chemicals. Large-scale plant cell and tissue cultures for producing useful products has been considered an attractive alternative to whole plant extraction for obtaining valuable chemicals. In plant cell and tissue cultures, cell growth and metabolite production are influenced by nutritional and environmental conditions as well as physical properties of the culture system. To obtain a high growth rate of plant cell and tissue cultures, the culture tem. To obtain a high growth rate of plant cell and tissue cultures, the culture conditions should be maintained at an optimum level. We studied the relationship between inoculum conditions and the growth of Panax ginseng hairy root culture, and found that the growth rate varied with the inoculum conditions such as the number of root tips, the length of root tips, the part of root tips, and the inoculum size and age of hairy roots.  相似文献   

18.
We developed a rapidly regenerable cell culture system in which the cell culture substrate detects cell death and selectively releases the dead cells. This culture material was achieved by combining a detector that responds to the signal from the dead cells and an actuator to release the dead cells. Benzo-18-crown-6-acrylamide (BCAm) with a pendant crown ether receptor was used as the sensor to recognize cellular signals and N-isopropylacrylamide (NIPAM) was used as the actuator. This copolymer of NIPAM and BCAm can respond to potassium ions and change its nature from hydrophobic to hydrophilic at the culture temperature of 37 degrees C. Living cells concentrate potassium ion internally; when cells die, potassium ions are released. The polymer surface recognizes the potassium ions released from the dead cells, the NIPAM hydrates, and the dead cells are selectively detached. This in vitro culture system is a novel one in which artificial culture materials work cooperatively with cellular metabolism by responding to this signal from the cells, thereby realizing in vitro tissue regeneration partly mimicking the mechanisms of in vivo homeostasis.  相似文献   

19.
We present a simple and easy to handle PDMS microfluidic device for neuronal cell culture studies in three-dimensional hydrogel scaffolds. The hydrogel is structured in parallel layers to reconstruct cell layers close to the natural environment. Dissociated cortical neurons of embryonic rats have been cultured in 0.5% w/v agarose including 0.2% w/v alginate. The cells formed neurite networks through neighboring cell free hydrogel layers. The cell culture showed neurite outgrowth in the microfluidic channel over more than seven days in vitro without perfusion. Culturing neurons in hydrogel layers surrounded by a liquid phase containing culture medium resulted in denser neuronal networks.  相似文献   

20.
Kim T  Cho YH 《Lab on a chip》2011,11(10):1825-1830
This paper presents a pumpless cell culture chip, where a constant-rate medium perfusion is achieved by balanced droplet dispensing. Previous pumpless cell culture chips, where the gravity-driven flow is induced by gradually decreasing the hydraulic-head difference, Δh, between source and drain reservoirs, result in a decreasing perfusion-rate. However, the present pumpless cell culture chip, where autonomous droplet dispensers are integrated on the source reservoirs, results in a constant perfusion-rate using a constant Δh maintained by balanced droplet dispensing between the source-inlet and the drain-outlet. In the experimental study, constant perfusion-rates of 0.1, 0.2, and 0.3 μl min(-1) are obtained by Δh of 38, 76, and 114 mm, respectively. At the constant perfusion-rate (Q=0.2 μl min(-1)), H358 lung cancer cells show the maximum growth-rate of 57.8 ± 21.1% d(-1), which is 1.9 times higher than the 30.2 ± 10.3% d(-1) of the static culture. At a perfusion-rate varying between 0.1-0.3 μl min(-1) (average=0.2 μl min(-1)), however, the H358 cells show a growth-rate of 46.9 ± 8.3% d(-1), which is lower than that of the constant Q of 0.2 μl min(-1). The constant-rate perfusion culture (Q=0.1, 0.2, and 0.3 μl min(-1)) also results in an average cell viability of 89.2%, which is higher than 75.9% of the static culture. This pumpless cell culture chip offers a favorable environment to cells with a high growth-rate and viability, thus having potential for use in cell-based bio-assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号