首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Hydrazones containing 1-phenyl-1,2,3,4-tetrahydroquinoline units were synthesized starting from diphenylamine. These compounds were found to constitute novel hole transporting materials and were characterized by the time of flight method. The hole drift mobility in these compounds exceeds 10−6 cm2 V−1 s−1 at an electric field of 106 V cm−1.  相似文献   

2.
3.
Spiro‐OMeTAD is widely used as thehole‐transporting material (HTM) in perovskite solar cells (PSC), which extracts positive charges and protects the perovskite materials from metal electrode, setting a new world‐record efficiency of more than 20 %. Spiro‐OMeTAD layer engross moisture leading to the degradation of perovskite, and therefore, has poor air stability. It is also expensive therefore limiting scale‐up, so macrocyclic metal complex derivatives (MMDs) could be a suitable replacement. Our review covers low‐cost, high yield hydrophobic materials with minimal steps required for synthesis of efficient HTMs for planar/mesostructured PSCs. The MMDs based devices demonstrated PCEs around 19 % and showed stability for a longer duration, indicating that MMDs are a promising alternative to spiro‐OMeTAD and also easy to scale‐up via solution approach. Additionally, this review describes how optical and electrical properties of MMDs change with chemical structure, allowing for the design of novel hole‐mobility materials to achieve negligible hysteresis and act as effective functional barriers against moisture which results in a significant increase in the stability of the device. We provide an overview of the apt green‐synthesis, characterization, stability and implementation of the various classes of macrocyclic metal complex derivatives as HTM for photovoltaic applications.  相似文献   

4.
Summary. Star-shaped molecules of di(9-alkylcarbazol-3-yl)arylamines were synthesized and found to constitute new glass-forming materials with glass transition temperatures ranging from 40 to 147°C. The electron photoemission spectra of the molecular glasses were recorded and ionisation potentials of 4.9–5.0 eV were established. Room temperature time of flight hole drift mobilities of the di(9-alkylcarbazol-3-yl)phenylamines molecularly dispersed in polycarbonate-Z approached 5 · 10−6 cm2/Vs at high electric fields. Some of the compounds were converted to cross-linkable derivatives, which are potential components for insoluble charge transport layers.  相似文献   

5.
On the reported TCP‐OH (See Scheme 1), other two star‐shaped molecules are theoretically designed by replacement of side group of TCP‐OH by N,N‐di(4‐methoxyphenyl)aniline for TPAP‐OH and oxygen‐bridged triarylamine for TBOPP‐OH . The core group, phenol, is kept in three molecules. Their potential to be hole transport material in perovskite solar cells without dopants is evaluated by multiscale simulations. The properties of isolated molecules are estimated by the frontier molecular orbital, absorption spectrum, and hole mobility. After that, the HTM@CH3NH3PbI3 adsorbed system is studied to consider the influence of adsorption on HTM performance. Besides the primary judgment, the glass transition temperature is also simulated to determine the stability of amorphous film. Not only the chemical stability is evaluated but also the amorphous film stability is considered. The latter is almost neglected in previous theoretical studies to evaluate the properties of HTMs. The performance of a designed molecule is evaluated from both the isolated molecules and HTM@CH3NH3PbI3 adsorbed system including aforementioned items, which is favorable to build reliable structure‐property relationship.  相似文献   

6.
Multi-branched molecules have recently demonstrated interesting behaviour as charge-transporting materials within the fields of perovskite solar cells (PSCs). For this reason, extended triarylamine dendrons have been grafted onto a pillar[5]arene core to generate dendrimer-like compounds, which have been used as hole-transporting materials (HTMs) for PSCs. The performances of the solar cells containing these novel compounds have been extensively investigated. Interestingly, a positive dendritic effect has been evidenced as the hole transporting properties are improved when going from the first to the second-generation compound. The stability of the devices based on the best performing pillar[5]arene material has been also evaluated in a high-throughput ageing setup for 500 h at high temperature. When compared to reference devices prepared from spiro-OMeTAD, the behaviour is similar. An analysis of the economic advantages arising from the use of the pillar[5]arene-based material revealed however that our pillar[5]arene-based material is cheaper than the reference.  相似文献   

7.
Organic dipolar compounds containing a 1,3‐indandione‐5,6‐dicarboxylic acid moiety as an electron acceptor group were examined for the feasibility of using as the light harvesting material in dye‐sensitized solar cells. Two compounds with triphenylamine donor moieties were synthesized by attaching it to 1,3‐indandione‐5,6‐dicarboxylic acid. The device made with these simple dyes achieved a quantum yield up to 2.5 %, which is comparable to the widely used dye made with cyanoacrylic acid. The spectroscopic properties of these compounds were analysed with the aid of theoretical models according to the time‐dependent density functional theory.  相似文献   

8.
A series of organic electron-rich π-bridged symmetric hydrazones, composed of two donor moieties connected through a thiophene- or a pyrrole-based π-spacer, has been synthesized as a suitable alternative to 2,2’,7,7’-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9’-spirobifluorene ( Spiro-OMeTAD ), considered the benchmark hole transporting material (HTM) in perovskite solar cells (PSCs). The cheap synthetic protocol is suitable for potential large-scale production. All the compounds were characterized, showing good energy levels alignments with the perovskite and very close energy levels to the Spiro-OMeTAD . Furthermore, computational analysis confirmed the electrochemical trend observed. The costs of synthesis were estimated, as well as the produced waste to synthesise the final HTMs, underlining the low impact of these compounds on the environment with the respect to Spiro-OMeTAD . Overall, the relevant electrochemical properties and the low cost of the synthetic approaches allow these compounds to be a greener and easy-to-synthesize alternative to the Spiro-OMeTAD for industrial development of PSCs.  相似文献   

9.
Summary. Intramolecular cyclization of N,N′-di(3-chloro-2-hydroxy)propyl-N,N′-diphenylbenzidine occurs to give bis-1,2,3,4-tetrahydroquinoline derivative 1,1′-diphenyl-1,2,3,4,1′,2′,3′,4′-octahydro-6,6′-biquinolinyl-3,3′-diol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号