首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effective plastic film deinking could permit the reuse of recycled polymer to produce clear film, reduce solid waste for landfills, reduce raw material demand for polymer production, and aid process economics. In this study, the deinking of a commercial polyethylene film printed with water-based ink was studied using surfactants in the presence of hardness ions (calcium ions) at various pH levels. The electrostatic properties of ink particles in a washing bath were also investigated. Synthetic anionic surfactant or fatty acid soap in the presence of calcium ions at alkaline pH levels was found to be nearly as effective at deinking as cationic, nonionic, or amphoteric surfactants alone. However, adding calcium ions decreases the deinking effectiveness of cationic, nonionic, and amphoteric surfactants. Increasing the length of the ionic surfactant hydrophobe enhances deinking. Zeta potential measurements showed that water-based ink particles in water reach the point of zero charge (PZC) at a pH of about 3.6, above which ink particles are negatively charged, so cationic surfactant tends to adsorb better on the ink than anionic surfactant above the PZC in the absence of calcium. As the cationic surfactant concentration is varied between 0.005 and 25 mM, the zeta potential of the ink particles reverses from negative to positive owing to adsorption of cationic surfactant. For anionic surfactants, added calcium probably forms a bridge between the negatively charged ink and the negatively charged surfactant head groups, which synergizes adsorption of the surfactant and aids deinking. In contrast, calcium competes for adsorption sites with cationic and nonionic surfactants, which inhibits deinking. All the surfactants studied here disperse ink particles effectively in the washing bath above pH 3 except for the ethoxylated amine surfactant.  相似文献   

2.
Three alkyltrimethylammonium bromides (i.e., dodecyl-, tetradecyl-, and hexadecyltrimethylammonium bromide or DTAB, TTAB, and CTAB, respectively) were used to remove a blue solvent-based ink from a printed surface of high-density polyethylene bottles. Either an increase in the alkyl chain length or the surfactant concentration was found to increase the deinking efficiency. Complete deinking was achieved at concentrations about 3, 8, and 24 times of the critical micelle concentration (CMC) of CTAB, TTAB, and DTAB, respectively. For CTAB, ink removal started at a concentration close to or less than its CMC and increased appreciably at concentrations greater than its CMC, while for TTAB and DTAB, significant deinking was only achieved at concentrations much greater than their CMCs. Corresponding to the deinking efficiency of CTAB in the CMC region, the zeta potential of ink particles was found to increase with increasing alkyl chain length and concentration of the surfactants, which later leveled off at some higher concentrations. Wettability of the surfactants on an ink surface increased with increasing alkyl chain length and concentration of the surfactants. Lastly, solubilization of ink binder in the surfactant micelles was found to increase with increasing alkyl chain length and surfactant concentration. We conclude that adsorption of surfactant on the ink pigment is crucial to deinking due to modification of wettability, zeta potential, pigment/water interfacial tension, and dispersion stability. Solubilization of binder (epoxy) into micelles is necessary for good deinking because the dissolution of the binder is required before the pigment particles can be released from the polymer surface.  相似文献   

3.
Experiments are reported with foam films from aqueous solutions with increasing concentration of a cationic surfactant. A correlation is established between the foam film thickness and the possible variation of diffuse electric layer potential at the air/water interface from a negative value in absence of surfactant to positive values at higher surfactant concentrations. It is concluded that a charge reversal at the air/water interface is expected to occur under increasing concentration of cationic surfactants in aqueous solutions.  相似文献   

4.
Fluorescence drainage-profiles of thin liquid films formed from Rhodamine solutions containing anionic, cationic and non-ionic surfactants have been investigated. It is found that the influence of system variables such as electrolyte concentration, dye concentration, film environment and solution viscosity can be evaluated by means of the profiles. The addition of sodium chloride leads to the expansion (non-ionic surfactant), or contraction (anionic surfactant) of the profiles. In the case of the cationic surfactant, it reduces the number of fringes in the profiles. The height of selected fringes changes linearly with dye concentration, and no fringes are observed when the films are submerged in non-polar solvents. The influence of solution viscosity on film thickness and drainage rate is demonstrated by the number and frequency of fringes in the profile. The formation of first and second "black films" from solutions containing varying concentrations of sodium chloride can be shown.  相似文献   

5.
The Separation of ink and pulp fibers in recycled paper is primarily achieved by flotation methods. Xerographic toners from photocopiers and laser printers are known to cause problems in flotation deinking. Wettability and froth stability are two important factors which determine the floatability of xerographic toners. The floatability is investigated for a selected toner using a cationic, a nonionic, and an anionic surfactant. At low surfactant concentrations the froth is too unstable to support flotation, whereas at high surfactant concentrations the toner is rendered hydrophilic by adsorbed surfactant molecules and does not stick to air bubbles. Consequently, a maximum in flotation response is found at an intermediate surfactant concentration near the critical micelle concentration. Cationic, nonionic, and anionic surfactants all adsorb with their hydrocarbon tails on the toner surface. By choosing appropriate froth-stabilizing additives it is possible to enhance the flotation performance.  相似文献   

6.
We demonstrated that the photopatterned single-layer adsorption film of poly(1-dodecyl-4-pyridinium bromide) on a silica surface was available for a template of nickel-phosphorus (Ni-P) electroless plating through sensitization with a SnCl(2) aqueous solution and activation with a PdCl(2) aqueous solution. Four kinds of poly(1-alkyl-4-vinylpyridinium halide)s bearing methyl, propyl, hexyl, and dodecyl groups were prepared. The cationic polymers were adsorbed by a negatively charged silica surface from their solutions, to form single-layer adsorption films exhibiting desorption-resistance toward deionized water and ethanol. The organic adsorption films could be decomposed completely by exposure to 172 nm deep-UV light. The formation and decomposition of the single-layer films were confirmed by deep-UV absorption spectral measurement and zeta-potential measurement. Ni-P electroless plating was carried out on the photopatterned adsorption films, using three types of SnO(x) colloidal materials without and with cationic or anionic surfactant as catalyst precursors in the sensitization step. In the case of the negatively charged SnO(x) colloids surrounded by anionic surfactant, Ni-deposition took place preferentially on the cationic adsorption films remaining in unexposed regions. The Ni-deposition was accelerated significantly on the cationic adsorption film bearing dodecyl groups. It was obvious by ICP-AES analyses that the hydrophobic long-chain dodecyl groups in the adsorption film could promote the adsorption of the negative SnO(x) colloids on the film surface, followed by much nucleus formation of zerovalent Pd catalysts useful for the electroless plating. The result of our experiment clearly showed that, in addition to electrostatic interaction, van der Waals interaction generating between the hydrophobic long-chain hydrocarbons of the adsorption film and the surfactant improved significantly the adsorption stability of the SnO(x) colloids, resulting in highly selective Ni-deposition in accord with the photopattern shape of the cationic single-layer adsorption film.  相似文献   

7.
Recycling of civic paper waste by enzyme-based technology is nowadays a point of much concern for pollution-less green environment. In this study, the deinking effectiveness of purified xylanase from a newly isolated bacterium was evaluated for recycling of laser jet paper waste. A potent xylanases-producing bacterium from the microbial consortia of termite gut was isolated, which was further identified on the basis of 16S rRNA sequence as Bacillus sp. CKBx1D. In submerged fermentation condition, the isolate produced the highest level of xylanase (480?U/ml) at 36?h of growth. The extracellular xylanase system comprises of three distinct isozymes (est. Mw 35.28, 28.63, 18.94?kDa). The deinking of laser printed paper waste was performed using the purified enzyme mixture. Whole operational parameters were optimized using the Response Surface Methodology; it was found that at pH 6.8 with 47.2?h of continuous shaking at constant temperature of 35?°C, enzymes showed best deinking activity. After enzyme treatment, the physical properties of the pulp like brightness and ERIC (effective residual ink content) values were enhanced, whereas the pulp opacity was more reduced than the control treatment. Hence, the bacterial isolate and its xylanolytic enzyme system could efficiently be used in recycling paper waste as deinking agent.  相似文献   

8.
Drops impacting on horizontal aqueous surfactant films have been analyzed using a high-speed camera. Drops of either water or aqueous surfactant solutions had a diameter of 2.4?±?0.4 mm and impacted with a velocity of 0.1 to 1.3 m/s. As surfactants, anionic sodium dodecyl sulfate and cationic cetyltrimethyl ammonium bromide were used. Pure water drops impacting on freestanding surfactant films showed coalescence, bouncing, partial bouncing, passing, and partial passing. For bouncing, the concentration of surfactant in the surfactant film must exceed the critical micelle concentration. When surfactant was added to the drop, coalescence and partial passing were suppressed. We attribute the different behavior to different hydrodynamic boundary conditions at the surface of pure water and surfactant solution, leading to different repulsive hydrodynamic forces arising when the air has to flow out of the closing gap between the two liquid surfaces. The boundary condition changes as a function of surfactant concentration from a slip to no-slip, leading to stronger hydrodynamic repulsion. In addition, estimates of the characteristic velocities show that diffusion of air into the water is slow and can only account for the very last thinning of the air gap before coalescence.  相似文献   

9.
Measuring the change of the conductivity of a Polyaniline (PANI) film while in contact with a solution is considered to be a costeffective tool for pH sensing. The device consists of a PANI film deposited between two identical electrodes, reducing the number of fabrication steps. To ensure the sensors display an optimum response to solutions of different pH values, it is important to understand the effect of the polymer binder, surfactant and film thickness. The effect of varying the amount of Polyvinyl butyral (PVB) and Hypermer (PS3) on the pH sensitivity of screen printed thick film sensors is reported.  相似文献   

10.
A new type of micro/nanocomposite was made by using only micro fibrillated cellulose and inorganic fillers. This composite structure can contain up to 90% fillers being still mechanically stable and flexible. Calendering can be used to produce dense structures with extremely smooth surface. To study the effect of filler shape and type, both kaolin and precipitated calcium carbonate (PCC) based sheets were examined. Microscopy (cross-sectional and surface SEM images) and mechanical and morphological properties, including strength properties, surface roughness and dimensional stability as a function of moisture were analysed. After calendering the surface of the PCC containing sheets was smoother than that of photopaper and in the same level as reference plastic film Mylar A. The dimensional stability of the sheets was clearly better than that of paper sheets. The combination of a good dimensional stability with low surface roughness makes these structures potential for printed electronics applications, in which they could replace oil-based plastic substrates. Suitability for printed electronic applications was tested by inkjet printing conductors with silver nanoparticle ink. The sheet resistances of conductors printed on kaolin based sheets were close to those printed on plastic Mylar A film.  相似文献   

11.
In this work, we developed a roll‐to‐roll printed poly(3,4‐ethylenedioxythiophene)/polystyrene sulphoanate without graphene oxide (GO) (PEDOT/PSS) and with graphene oxide (PEDOT/PSS/GO) plastic films for the electrochemical determination of carbofuran. Both the PEDOT/PSS and PEDOT/PSS/GO plastic films showed electroactivity towards the oxidation of carbofuran. Incorporation of graphene oxide (GO) improves the electrochemical activity of carbofuran and increased its sensitivity. The printed plastic films were characterized by cyclic voltammetry (CV), linear sweep voltammetry (LSV), surface profilometer, four point probe and atomic force microscopy (AFM). The effects of pH, deposition time, deposition potential and film thickness on the oxidation peak current of carbofuran were investigated. Under the optimized conditions, a dynamic linear range of 1 μM–90 μM with a detection limit of 1.0×10?7 M (S/N=3) were obtained. The printed PEDOT/PSS/GO plastic electrode was applied for the determination of carbofuran in vegetable and fruit samples with recoveries between 94.4 and 101.8 %.  相似文献   

12.
The microscopic thin wetting film method was used to study the stability of wetting films from aqueous solution of surfactants and phospholipid dispersions on a solid surface. In the case of tetradecyltrimethylammonium bromide (C(14)TAB) films the experimental data for the receding contact angle, film lifetime, surface potential at the vapor/solution and solution/silica interface were used to analyze the stability of the studied films. It is shown that with increasing C(14)TAB concentration charge reversal occurs at both (vapor/solution and solution/silica) interfaces, which affects the thin-film stability. The spontaneous rupture of the thin aqueous film was interpreted in terms of the earlier proposed heterocoagulation mechanism. The presence of the mixed cationic/anionic surfactants was found to lower contact angles and suppresses the thin aqueous film rupture, thus inducing longer film lifetime, as compared to the pure amine system. In the case of mixed surfactants hetero-coagulation could arise through the formation of ionic surfactant complexes. The influence of the melting phase-transition temperature T(c) of the dimyristoylphosphatiddylcholine (DMPC) on the stability of thin films from dispersions of DMPC small unilamellar vesicles on a silica surface was studied by measuring the film lifetime and the TPC expansion rate. The stability of thin wetting films formed from dispersions of DMPC small unilamellar vesicles was investigated by the microinterferometric method. The formation of wetting films from diluted dispersions of DMPC multilamellar vesicles was studied in the temperature range 25-32 degrees C. The stability of thin film of lipid vesicles was explained on the basis of hydrophobic interactions. The results obtained show that the stability of wetting films from aqueous solutions of single cationic and mixed cationic-anionic surfactants has electrostatic origin, whereas the stability of the phospholipid film is due to hydrophobic interaction.  相似文献   

13.
Mills A  Hazafy D 《The Analyst》2008,133(2):213-218
A solvent-based, irreversible oxygen indicator ink is described, comprising semiconductor photocatalyst nanoparticles, a solvent-soluble redox dye, mild reducing agent and polymer. Based on such an ink, a film -- made of titanium dioxide, a blue, solvent-soluble, coloured ion-paired methylene blue dye, glycerol and the polymer zein -- loses its colour rapidly (<30 s) upon exposure to UVA light and remains colourless in an oxygen-free atmosphere, returning to its original blue colour upon exposure to air. In the latter step the rate of colour recovery is proportional to the level of ambient oxygen and the same film can be UV-activated repeatedly. The mechanism of this novel, UV-activated, solvent-based, colorimetric oxygen indicator is discussed, along with its possible applications.  相似文献   

14.
The aim of the present study was to control entanglements in order to regulate the properties of polymeric solids. Initially, fabrication of polymeric solids with few entanglements was attempted. Films of the DNA–cationic surfactant, cetyltrimethylammonium bromide (CTAB) (DNA–CTA), were cast from ethanol solution at room temperature. Morphological examination of DNA–CTA complex films using atomic force microscopy (AFM) revealed that these films were constructed by particle‐like substances. Geometrical analysis of AFM images showed that the particle‐like substances were the aggregates of several DNA–CTA globules. Mechanical characterization suggested that there were fewer entanglements than with normal plastic films. Small angle X‐ray scattering experiments during annealing indicated that molecular motions were highly excited in the surface region of each particle. In conclusion, a globular polymeric film with fewer entanglements was fabricated. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 730–738  相似文献   

15.
Summary: Defined films of luminescent ruthenium(II ) polypyridyl‐poly(methyl methacrylate) (PMMA) and iridium(III ) polypyridyl‐polystyrene (PS) copolymers could be prepared by ink‐jet printing. The copolymers were deposited on photoresist‐patterned glass substrates. Films as thin as 120 nm could be printed with a roughness of 1 to 2%. In addition, the film thickness could be varied in a controlled way through the number of droplets deposited per unit area. The topography of the ink‐jet printed films was analyzed utilizing an optical profilometer. The absorbance and emission spectra were measured using fast parallel UV‐vis and fluorescence plate reader.

Photo of the solutions of luminescent ruthenium (left) and iridium (right) containing polymers in a glass microtiter plate (top). The subsequently prepared films using ink‐jet dispensing techniques are shown below.  相似文献   


16.
The fluorescence properties of Rhodamine B in thin liquid films, formed from a number of anionic, cationic and non-ionic surfactant solutions, were investigated. Laser excitation was used and the emission was monitored over a period of time. Drainage profiles with light and dark fluorescence fringes were recorded with plane-polarized radiation. Change of polarization caused profound changes in the appearance of the profiles. The distribution of dye molecules between surfaces of the film and its interior was assessed and found to be related to the speed of film drainage. Expressions were established for the relation between fluorescence fringes and film thickness at different orientations of the film surface to the emission measurement direction.  相似文献   

17.
The influence the pH has on the properties of foam films stabilized by the nonionic surfactant n-dodecyl-beta-d-maltoside (beta-C12G2) was studied. Foam film measurements were carried out with the thin film pressure balance (TFPB) technique using two different film holders, namely, the Scheludko-Exerowa cell and the porous plate. With the former, the equilibrium film thickness h at a given capillary pressure Pc and, with the latter, complete disjoining pressure versus thickness curves (Pi-h curves) were measured. Most of the results were obtained for 10(-4) and 10(-5) M beta-C12G2 solutions that contained 10(-3) M electrolyte. Measurements were carried out in a pH range from 3 to 9. The major results are the following: (1) For a given pH, a pronounced effect of the surfactant concentration cs is seen only if cs approximately cmc. This holds true for both low and high pH values. (2) For a given cs, at least one pronounced effect is seen if the pH is changed, namely a drop of the surface charge density down to zero when the isoelectric point (pH* and pHcr) is reached. (3) The pH of the isoelectric point increases with increasing surfactant concentration. (4) The q0-pH curve of beta-C12G2 shows two pH ranges (3-5.5 and 7-10) in which the surface charge density q0 is pH-insensitive, while a significant change of q0 was observed between pH=5.5 and 7.0. A possible explanation is given.  相似文献   

18.
Stratification of a foam liquid film drawn from aqueous solutions of sodium naphthenate at relatively high concentration is likely due to a lamellar liquid crystal-like structure within the film. Film stratification, resulting in stepwise thinning, has been observed in foam films formed from systems containing either moderate to high concentrations of surfactant or in films formed from solutions containing solid particles. At moderate surfactant concentrations, film stratification is likely due to layers of ordered spherical micelles as postulated in Wasan and Nikolov's model of film stratification. At high surfactant concentrations, stepwise thinning of the films and occurrence of domains of uniform color within the film suggest a lamellar liquid crystal-like structure within the film, potentially up to hundred or more oriented layers. The LLC-like structure inside the film can occur at concentrations below the lower limit of the LLC existence as a bulk phase.  相似文献   

19.
Ink‐jet printing (IJP) represents a highly promising liquid processed polymer deposition method for the film preparation of functional polymers in photo‐electronic devices. In this report, the results on the IJP of a fluorene‐based electroluminescent polymer, poly(9,9‐dihexylfluorene‐alt‐2,5‐dioctyloxybenzene) (PF6OC8), from a piezoelectric droplet generator are presented. The polymer film thickness has been found to show an approximate linear relation with the number of droplets per unit area; it is thus convenient to control the film thickness by the space of printed dots in IJP process. In comparison, spin coating approach is also used to prepare polymer films with different thicknesses by varying solution concentration and spinning speed. However, it is found that spin coating is difficult to control the film thickness quantitatively. The influence of film thickness on the photoluminescence (PL) properties of PF6OC8 films prepared by IJP and spin coating is comparatively investigated. For both ink‐jet printed and spin coated films, the intensity of PL spectra first increases and then decreases with increase in the film thickness, probably due to the exciton quenching in thicker films. When the polymer film thickness is at nanoscale, the major peak in the PL spectrum is the 0–0 vibronic emission at about 420 nm, and with increase in the film thickness, the 0–1 vibronic peak at about 440 nm becomes dominant. The red‐shifted PL spectra with increase in film thickness show the change from the 2D exciton state to the 3D one. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The effect of the cationic surfactants decamethoxine and miramistin on the physicochemical properties of the natural flavonoids quercetin and rutin is studied spectrophotometrically in the range of physiological pH values. It is established that the interaction with these cationic surfactants changes the spectral characteristics of the flavonoids in solutions and essentially increases their adsorption on the surface of highly dispersed silica as compared with their aqueous solutions. It is shown that the efficiency of flavonoid adsorption from decamethoxine and miramistin solutions is governed by solution pH, flavonoid hydrophobicity, and the nature of a cationic surfactant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号