首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transfer functions determined from the component values of an equivalent circuit are used to calculate the relative signal-to-noise ratio of rf coils for magnetic resonance imaging. Experimental verification of the method is obtained by directly measuring signals from three solenoidal coils and by measuring the signal-to-noise ratio of these solenoids. The transfer functions separate the total noise voltage into contributions from the coil resistance and contributions from magnetic and electric field interactions with the sample. The use of this technique in understanding and improving coil design is discussed.  相似文献   

2.
In the application of solid-state NMR to many systems, the presence of radiofrequency (rf) electric fields inside classical solenoidal coils causes heating of lossy samples. In particular, this is critical for proteins in ionic buffers. Rf sample heating increases proportional to frequency which may result in the need to reduce the rf pulse power to prevent partial or total sample deterioration. In the present paper, we propose a multifrequency-tunable NMR resonator where the sample is electrically shielded from the NMR coil by a conductive sheet that increases the magneto-electric ratio. Expressions for the B1 efficiency as function of magnetic and electric filling factors are derived that allow a direct comparison of different resonators. Rf efficiency, homogeneity, signal-to-noise, and rf sample heating are compared. NMR spectra at 700MHz on ethylene glycol, glycine, and a model protein were acquired to compare the resonators under realistic experimental conditions.  相似文献   

3.
胡洋  王秋良  李毅  朱旭晨  牛超群 《物理学报》2016,65(21):218301-218301
在磁共振成像设备中,为了消除目标区域内的高阶谐波磁场分量,传统方法采用无源匀场,但该方法匀场精度较低,针对性较差,适用于全局匀场,而有源匀场则可以通过优化线圈分布来产生所需要的特定的磁场分布.但是,由于匀场线圈线型的复杂度会随着线圈阶数的增加而增加,难以满足设计需要,因此本文提出了一种用于磁共振成像超导匀场线圈系统的多变量非线性优化设计方法.该方法基于边界元方法,将匀场线圈所产生的磁场与目标磁场之间的偏差作为目标函数,线匝间距、线圈半径等作为约束条件,通过非线性优化算法,得到满足设计要求的线圈分布.通过一个中心磁场为0.5 T的开放式双平面磁共振成像超导轴向匀场线圈的设计案例,说明本方法具有计算效率高、灵活性好的特点.  相似文献   

4.
Low-field nuclear magnetic resonance magnet(2 MHz) is required for rock core analysis. However, due to its low field strength, it is hard to achieve a high uniform B_0 field only by using the passive shimming. Therefore, active shimming is necessarily used to further improve uniformity for Halbach magnet. In this work, an equivalent magnetic dipole method is presented for designing shim coils. The minimization of the coil power dissipation is considered as an optimal object to minimize coil heating effect, and the deviation from the target field is selected as a penalty function term. The lsqnonlin optimization toolbox of MATLAB is used to solve the optimization problem. Eight shim coils are obtained in accordance with the contour of the stream function. We simulate each shim coil by ANSYS Maxwell software to verify the validity of the designed coils. Measurement results of the field distribution of these coils are consistent with those of the target fields.The uniformity of the B_0 field is improved from 114.2 ppm to 26.9 ppm after using these shim coils.  相似文献   

5.
A computational model which enables to evaluate the distribution of the critical currents, electric fields and the voltage in the winding of a solenoidal high temperature superconducting (HTS) magnets subjected to an external magnetic field parallel with the magnet axis, was developed. The model comes out from the well-known power law between the electric field and the transport current of the HTS tape short sample. It allows to predict the voltage–current V(I) characteristics of both the pancake coils and the complete magnet. The model was applied to the magnet system consisting of 22 pancake coils made of multifilamentary Bi(2223)/Ag tape at 20 K, which is subjected to an external uniform magnetic field parallel with the coil axis. A rather unexpected behavior of the magnet at different operating conditions (operating current and external magnetic field strength) is predicted, analyzed and reported together with a theoretical explanation. On one hand, the external uniform magnetic field parallel with the coil axis increases the resulting magnetic field strength, however, on the other hand it simultaneously decreases the angle between the resulting magnetic field and the tape surface. Thus, the effect of higher magnetic loading caused by the presence of an external magnetic field strength which is acting on individual turns located close to the coil’s flanges is compensated by more favorable orientation of the tape with respect to the resulting magnetic field. As a result, increase in the critical currents of these turns is expected. Further, the results indicate, that in case of the high field HTS insert coils the anisotropy in the Ic(B) characteristic does not play a substantial role. As a consequence, the technology of the production of the tapes for high field insert HTS coils should concentrate rather on the tapes having the current carrying capacity as high as possible, than on the attempt how to decrease the anisotropy in the Ic(B) by changing the architecture of the filaments in the tape.  相似文献   

6.
王龙庆  王为民 《中国物理 B》2014,23(2):28703-028703
Significant high magnetic gradient field strength is essential to obtaining high-resolution images in a benchtop mag- netic resonance imaging (BT-MRI) system with permanent magnet. Extending minimum wire spacing and maximum wire width of gradient coils is one of the key solutions to minimize the maximum current density so as to reduce the local heating and generate higher magnetic field gradient strength. However, maximum current density is hard to optimize together with field linearity, stored magnetic energy, and power dissipation by the traditional target field method. In this paper, a new multi-objective method is proposed to optimize the maximum current density, field linearity, stored magnetic energy, and power dissipation in MRI gradient coils. The simulation and experimental results show that the minimum wire spacings are improved by 159% and 62% for the transverse and longitudinal gradient coil respectively. The maximum wire width increases from 0.5 mm to 1.5 mm. Maximum gradient field strengths of 157 mT/m and 405 mT/m for transverse and lon- gitudinal coil are achieved, respectively. The experimental results in BT-MRI instrument demonstrate that the MRI images with in-plane resolution of 50 ~tm can be obtained by using the designed coils.  相似文献   

7.
Heating due to high power 1H decoupling limits the experimental lifetime of protein samples for solid-state NMR (SSNMR). Sample deterioration can be minimized by lowering the experimental salt concentration, temperature or decoupling fields; however, these approaches may compromise biological relevance and/or spectroscopic resolution and sensitivity. The desire to apply sophisticated multiple pulse experiments to proteins therefore motivates the development of probes that utilize the RF power more efficiently to generate a high ratio of magnetic to electric field in the sample. Here a novel scroll coil resonator structure is presented and compared to a traditional solenoid. The scroll coil is demonstrated to be more tolerant of high sample salt concentrations and cause less RF-induced sample heating. With it, the viable experimental lifetime of a microcrystalline ubiquitin sample has been extended by more than an order of magnitude. The higher B1 homogeneity and permissible decoupling fields enhance polarization transfer efficiency in 15N-13C correlation experiments employed for protein chemical shift assignments and structure determination.  相似文献   

8.
介绍了一种用于开放式MRI系统的射频发射线圈. 此发射线圈为上下2个相同的线圈,分别安装在磁体的2极,两线圈采用非对称的正交方式放置. 线圈为矩形螺线管结构,通过电磁场数值计算的方法对线圈的匝间距进行了优化,使线圈在300 mm的球形区域内达到偏差不超过3 dB的均匀性要求. 根据优化结果制作了一套用于0.23 T开放式MRI系统的发射线圈,并对线圈的均匀性及射频发射的效率进行了测试. 测试结果表明,线圈具有较高的发射效率和较好的均匀性,由此验证了设计方案的可行性.  相似文献   

9.
Magnetic resonance angiography of the peripheral vascular system has been hampered by the limited view provided by available imaging coils. We have constructed an extended-length, split-saddle design radiofrequency (rf) coil for peripheral angiography. The two coil halves are inductively coupled, to each other and to the rf source. Details regarding the construction of the coil and comparison of the performance with the knee coil are described here. This coil provides the benefit of a larger field of view but with image quality comparable to that of a commercial knee coil.  相似文献   

10.
Applications of low-field magnetic resonance imaging (MRI) systems (<0.3 T) are limited due to the signal-to-noise ratio (SNR) being lower than that provided by systems based on superconductive magnets (≥1.5 T). Therefore, the design of radiofrequency (RF) coils for low-field MRI requires careful consideration as significant gains in SNR can be achieved with the proper design of the RF coil. This article describes an analytical method for the optimization of solenoidal coils. Coil and sample losses are analyzed to provide maximum SNR and optimum B1 field homogeneity. The calculations are performed for solenoidal coils optimized for the human head at 0.2 T, but the method could also be applied to any solenoidal coil for imaging other anatomical regions at low field. Several coils were constructed to compare experimental and theoretical results. A head magnetic resonance image obtained at 0.2 T with the optimum design is presented.  相似文献   

11.
胡格丽  倪志鹏  王秋良 《物理学报》2014,63(1):18301-018301
在磁共振成像系统的工作过程中,噪声主要是由梯度线圈系统产生的.梯度线圈置于高均匀度超导磁体的室温孔内,并工作于脉冲状态,频繁的开启和关闭会使线圈中电流急剧随时间变化,变化的电流导致线圈受到变化的洛伦兹力作用,从而产生振动,这种高频振动所发出的噪声会对病人产生刺激,严重时甚至会对病人的听觉神经产生损伤.梯度场的场强越强、切换速度越快,所产生的噪声就越大.降低噪声的最根本方法是通过有效的梯度线圈设计,降低洛伦兹力的空间分布.本文针对纵向梯度线圈,在原经典目标场设计方法基础上,加入对振动参量,从而能够有效地降低线圈工作时所产生的噪声.其具体方法是将振动控制函数作为约束条件,通过目标场法建立数学模型,利用MATLAB进行电磁验算.计算结果表明,所提数学模型可有效地降低线圈振动的最大振幅.  相似文献   

12.
It is thought that the design of magnetic field modulation coils is one of the factors limiting enlargement of the sample size in electron paramagnetic resonance (EPR) measurements. In this study, we miniaturized the magnetic field modulation coil and combined it with a surface-coil-type resonator (SCR). The inductor of the SCR was a circular single-turn one-loop coil (diameter, 1 mm), and the magnetic field modulation coil was a twin-loop coil consisting of two solenoid coils each made of 15 turns of copper wire on a cylindrical bobbin with an axial length of 3 mm and an elliptical cross section (major axis, 7 mm; minor axis, 3 mm). The former was located on the latter via a spacer (thickness, 3 mm) in such a way that the directions of their axes coincided. Their combined size was about 10 mm wide, 10 mm deep, and 6 mm high. The transmission lines of the SCR were set on resonance at about 700 MHz. EPR measurements of a phantom (comprising agar that included a nitroxide radical and physiological saline solution), made with a miniaturized modulation coil combined with the SCR, exhibited a sensitivity similar to that for the conventional method. Authors' address: Hidekatsu Yokoyama, Department of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara 324-8501, Japan  相似文献   

13.
郝宽胜  黄松岭  赵伟  王坤 《物理学报》2011,60(7):78103-078103
本文基于二阶矢量位建立了回折线圈的阻抗和磁场计算的解析模型,并提出了计算磁场脉冲响应的方法.根据回折线圈用于涡流检测和电磁超声检测时的通用模型,将回折线圈的阻抗和磁场计算问题转化为多个单匝矩形线圈阻抗和磁场的叠加问题.基于二阶矢量位和时谐电磁场方程,推导了回折线圈的频域标势表达式;利用标势与矢量磁位和磁通密度间的关系,推导了计算区域的磁通密度和式样表面涡流的频域解析计算公式;通过计算线圈的感应电势和阻抗变化表达式,得到了线圈阻抗的频域解析表达式;采用FFT-IFFT方法计算了脉冲磁场的时域响应.以一双层双 关键词: 无损检测 回折线圈 二阶矢量位 解析建模  相似文献   

14.
The possibility of stabilizing effects that an rf electric field imposes on drift instabilities in an inhomogeneous plasma is investigated. A two-species, nonisothermal plasma, situated in an externally applied static magnetic field is considered with the rf electric field applied in the same direction as the dc magnetic field. The plasma is "mildly" inhomogeneous in density, with a density gradient perpendicular to the confining magnetic field. Using a hydrodynamic model for the plasma it is found that under certain conditions an increase in the frequency of the drift oscillations is obtained as the result of the application of the rf electric field. The increase in the frequency of the drift oscillations results in an increase in the magnitude of the stabilizing term associated with Landau damping which in turn yields a smaller growth rate for the drift instability. Discussions of the state of the plasma for different values of the frequency of the applied electric field are presented and the feasible ranges of values of the above quantity required for stabilization are determined. It is concluded that the resulting stabilization is significant only in a very narrow rf band. Therefore, the application of this technique appears to be a difficult experimental undertaking.  相似文献   

15.
An equivalent circuit is presented which accurately models the performance of magnetic resonance imaging receiver coils used with conducting samples. Coil-sample interaction is determined by measuring either the complex impedance or the associated resonant frequency and quality factor when samples of different conductivity are placed in the coil. The equivalent circuit component values are obtained from these data using a global nonlinear least squares fit. This equivalent circuit contains a minimum number of components necessary for understanding and quantifying the detuning and losses caused by electric and magnetic field coupling with the sample.  相似文献   

16.
Superconducting magnet system for a 28GHz ECR ion source has been designed.The maximum axial magnetic fields are 4T at the rf injection side and 2T at the beam extraction side,respectively.The hexapole magnetic field is about 2T on the inner surface of the plasma chamber.The superconducting coils consist of six solenoids and six racetrack windings for a hexapole field.Two kinds of coil arrangements were investigated:one is an arrangement in which the hexpole coil is located in the bore of the solenoids,and another is the reverse of it.The coils use NbTi-Copper conductor and are bath-cooled in liquid helium.The six solenoids are excited with individual power supplies to search for the optimal axial field distribution.The current leads use high Tc material and the cryogenic system is operated in LHe re-condensation mode using small refrigerators.The thermal insulated supports of the cold mass have also been designed based on the calculated results of the magnetic force.The heat loads to 70K and LHe stages were estimated from the design of the supports,the current leads and so on.  相似文献   

17.
While magnetic resonance images essentially contain a map of the both circularly polarized components of the RF transverse magnetic fields (B(1) field), the thermal heat and electromagnetic power deposition is generated by the associated electric fields. Measurement of electric field distributions/intensities across a sample yields an indirect indication of possible cause of heating within the sample and potentially enables the detection of "hot spots," which can be present within inhomogeneous radiofrequency (RF) fields, such as the case with magnetic resonance imaging at high field strength. As a result, establishing a valid technique for direct measurements of the electric field and its correlation, obtained using computational electromagnetics, is essential in assessing (1) the safety of the RF coil designs and (2) the validity of the calculations. In this work, a probe was built and used to measure the transverse electric field (E(1) field) distributions within an empty 8 T (tuned to 340 MHz) RF head coil and within a saline water phantom loaded in the same coil. The measured E(1) field distributions were favorably compared to the distributions obtained utilizing a finite difference time domain in-house package.  相似文献   

18.
A numerical technique is presented to optimize the design of quadrupole magnetic coil systems, such as presently used in tandem mirror fusion experiments. The optimization is carried out with respect to various plasma physics properties (e.g., MHD stability and reduced radial transport of particles) which depend on the magnetic field geometry. The coils are treated as filaments of infinitesimal thickness and the magnetic field is computed in the paraxial limit. Constraints on the coil shape and on the magnetic geometry can be incorporated into the method. It is demonstrated that coil solutions can be found which match given paraxial field profiles or which directly minimize a scalar functional of these profiles. As an interesting application of the latter technique, a filamentary coil design for a nearly omnigenous anchor is obtained.  相似文献   

19.
We report on a new type of magnetic lens that focuses atomic clouds using a static inhomogeneous magnetic field in combination with a radio-frequency (rf) field. The experimental study is performed with a cloud of cold cesium atoms. The rf field adiabatically deforms the magnetic potential of a coil and therefore changes its focusing properties. The focal length can be tuned precisely by changing the rf frequency value. Depending on the rf antenna position relative to the dc magnetic profile, the focal length of the atomic lens can be either decreased or increased by the rf field. PACS 39.25.+k; 37.10.Gh  相似文献   

20.
The dependence of the quench currents on the ramp rate was studied for four small NbTi coils. Two pairs of superconducting coils were tested. In one pair the SC 0.85-mm-dia wire with 2970 filaments was used, in the other two coils the SC wire contained 8910 filaments of smaller size. Two coils (with different number of filaments) contained 4.9 vol % of Large-Heat-Capacity Substance (LHCS) in the form of tiny powder evenly distributed over the winding volume, therefore their heat capacity at 4.2 K was an order of magnitude larger than that for coils without LHCS. The LHCS was introduced into the winding in a mixture with epoxy resin (“wet” winding). When the self-magnetic field varied with a rate of ≥5 T/s, premature quenches were observed in the central turns of the undoped coil made of a wire with 2970 filaments. These transitions are likely to be caused by magnetic flux jumps. In the LHCS-doped coil made of the same wire, the quenches took place at currents two to three times higher, since the sample was heated up to a critical temperature because of electrical losses (as confirmed by calculations). Thus, the improved stability of the LHCS-containing coils not only against long-term (0.1–1.0 s) disturbances but also against much shorter (10–100 μs) jumps of the magnetic flux is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号