首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为了减小非球面环形子孔径拼接测量时的中心偏移误差,根据检测原理及几何关系,分析了中心偏移误差在面形测量中的作用机理,推导了中心偏移误差模型,并在此基础上提出了一种基于二维像素矩阵的中心偏移误差补偿方法.该方法可以有效地得到初始面形测量数据的中心偏移量,在拼接之前减小由中心偏移误差引起的波前偏差的剔除误差,同时减小各环形子孔径中心之间的偏差.利用Zygo干涉仪进行了非球面环形子孔径拼接的中心偏移误差补偿实验,与零位检测结果相比,峰谷值残差为-0.015λ,均方根残差为0.003λ,表明该补偿方法大大减小了面形测量误差,提高了环形子孔径拼接的测量精度.  相似文献   

2.
子孔径拼接检测非球面时调整误差的补偿   总被引:1,自引:0,他引:1  
王孝坤 《中国光学》2013,6(1):88-95
针对在子孔径拼接测量非球面的过程中干涉仪与待测非球面相对位置存在的对准误差,提出了一种基于模式搜索迭代算法的调整误差补偿方法。该方法可以很好地从测量的子孔径相位数据中消除由拼接测量位置没有对准带来的调整误差,实现多个子孔径的精确拼接。对该方法的基本原理和实现步骤进行了分析和研究,建立了子孔径拼接测量的调整误差补偿模型。对口径为230 mm×141 mm的离轴碳化硅非球面反射镜进行了调整误差补偿和相位数据拼接,得到了精确的全口径面形分布。作为验证,对待测非球面进行了零位补偿检测,结果显示两种测试方法的面形PV值和RMS值的相对偏差仅为0.57%和2.74%。  相似文献   

3.
子孔径拼接检测大口径非球面技术的研究   总被引:2,自引:2,他引:0  
为了无需其他辅助光学元件就能够实现对大口径非球面的测量,提出了子孔径拼接干涉检测方法。并基于齐次坐标变换、最小二乘法以及Zernike多项式拟合建立了综合优化和误差均化的拼接数学模型;开发了子孔径拼接检测非球面算法软件,进行了计算机模拟和仿真实验;设计和搭建了子孔径拼接干涉检测装置,并利用子孔径拼接实现了对口径为350mm的双曲面的检测;为了分析和对比,对待测非球面进行零位补偿检测实验,子孔径拼接所得的面形分布和零位补偿检测所得的全口径面形分布都是一致的,其面形误差PV值和RMS值的偏差分别为0.032λ和0.004λ(λ=632.8nm)。从而提供了除零位补偿检测外另一种定量测试非球面尤其是大口径非球面的手段。  相似文献   

4.
环形子孔径拼接检测中机械误差的分离   总被引:1,自引:1,他引:0       下载免费PDF全文
为减少环形子孔径拼接干涉检测中机械误差对检测结果造成的影响,分析环形子孔径拼接过程中机械误差作用分量的表现形式,提出了分离机械误差的全局优化的环形子孔径拼接方法。分析根据波像差理论建立的机械误差分离数学模型,然后将其应用于避免误差传递和累积的全局优化的拼接方法中,并提出利用光线追迹的方法在拼接之前除去理想非球面波前与参考球面波前的差别。应用分离机械误差的拼接方法对口径为75mm、顶点曲率半径为100 mm的抛物面面形进行检测,得到的面形峰谷值误差为0.05,均方根值误差为0.003,验证了该拼接方法可有效分离环形子孔径拼接中的机械误差。  相似文献   

5.
在总结各种检测凸非球面方法优缺点的基础上,提出了利用子孔径拼接干涉检测凸非球面的新方法。利用标准球面波前作为参考波面,用干涉法逐次测量非球面各区域的相位分布,去除参考波面偏差以及调整误差后,通过子孔径拼接算法就可以重构凸非球面全口径的面形分布。研究和分析了该方法的基本原理和基础理论,开发了综合优化和误差均化的子孔径拼接算法。设计和研制了子孔径拼接干涉检测装置,并结合实例对口径为140 mm的碳化硅凸非球面进行了子孔径拼接测量,得到了精确的全口径面形分布,其面形分布的峰值(PV)和均方根(RMS)值偏差分别为0.274λ和0.024λ(λ=632.8 nm),且对该非球面进行零位补偿测量,其全口径面形与拼接全口径面形是一致的,面形分布的PV和RMS值的偏差仅为0.064λ和0.002λ,从而提供了又一种定量测试凸非球面的手段。  相似文献   

6.
闫公敬  张宪忠 《中国光学》2018,11(5):798-803
为了实现大口径凸非球面镜的高精度检测,本文研究了凸非球面非零位子孔径拼接检测技术,并建立了一套非零位拼接检测算法模型,模型中分别针对同轴子孔径与离轴子孔径非零位检测时所引入的测试误差进行了建模分析,同时对测试误差剔除、拼接系数求解、全口径面形获得等问题进行了研究。最后,结合工程实例,对一口径为130 mm的凸双曲面进行了拼接检测,分析了该非球面各测试子孔径非零位检测误差形式,同时进行了误差剔除、全口径面形获取等工作。从拼接结果中可以看出,拼接结果光滑、连续、无拼接痕迹。为了进一步验证拼接精度,我们将拼接结果与子孔径检测结果进行对比,引入了自检验子孔径评价方法,计算得到自检验子孔径与拼接结果在自检验子孔径范围内的残差图,二者残差图的PV值与RMS值分别为0.016λ与0.003λ,由上述结果可以得到自检验子孔径的测试结果与拼接结果在自检验子孔径范围内是一致的,从而验证了本文算法的拼接精度。  相似文献   

7.
刘智颖  张磊  胡原  高天元  王志坚 《应用光学》2008,29(6):1009-1012
大口径光学元件的检测开拓了子孔径拼接应用的新领域。采用小口径干涉仪对大口径被测元件不同区域进行波前检测,然后恢复计算出被测波前。使用光学设计软件ZEMAX对子孔径检测拼接技术进行了模拟,模拟结果表明:波前检测相对误差小于4.3λ‰,实现了对大口径光学元件面形的高精度检测,避免了相同口径检测干涉仪的使用,降低了检测成本及难度。  相似文献   

8.
环形子孔径拼接检测技术是一种利用小口径干涉仪实现对大口径非球面检测的有效方法。检测过程中,需要多次改变干涉仪同非球面镜之间的距离,以得到不同环带的干涉条纹。以等厚干涉为基础,建立了环带数学模型,仿真分析了各个环带的理论参数,以及干涉仪同非球面之间的理论距离。结果表明,该模型可用于环形子孔径拼接的仿真计算,对实际检测过程具有很好的指导作用。  相似文献   

9.
实验研究了子孔径光学检测的拼接准确度.实验选取9个子孔径进行拼接,同时利用ZYGO干涉仪来测量子孔径和整个被检面的表面面形.实验发现,测量基准子孔径和整个被检面的时间间隔对子孔径拼接准确度的评价存在严重影响.为此,重点研究了产生影响的原因并提出了消除测量基准子孔径和整个被测面时间间隙影响的方法.最后,利用该方法研究了子孔径重叠面积对拼接准确度的影响.结果显示,当重叠面积比为7%时,PV和RMS的拼接误差分别为0.03λ(λ=632.8 nm) 和 0.01λ,并且重叠面积比和拼接准确度呈近似线性关系.  相似文献   

10.
为解决高精度检测非球面反射镜的难题,提出利用Zygo干涉仪完成非球面环形子孔径检测。通过移动待测非球面,使得由干涉仪产生的参考球面波,以不同的曲率半径匹配待测非球面的各个环带区域,分别测试每个环带,进而完成对整个非球面的拼接检测。以双曲面反射镜为例进行拼接检测,并搭建辅助光路,利用无像差点法对拼接结果进行验证。验证结果表明:该方法测量误差小于1/20 (=632.8 nm)。  相似文献   

11.
环形子孔径拼接干涉检测非球面的建模与实验   总被引:1,自引:1,他引:0  
为实现球面波干涉检测非球面镜片,得到非球面镜片的完整面形信息,提出了基于标记的Givens变换,实现环形子孔径的精确定位和消旋转的处理.利用求解目标函数最小值的方法精确求解拟合波面以对子孔径数据进行处理,建立了全局优化拼接数学模型.对外径150 mm,内径100 mm的抛物面镜片进行三孔径拼接检测实验,均方根值为0.053 λ.对比补偿器法得到的全口径干涉检测结果均方根值△Wrms=0.052 λ,相对误差为1.92%.实验结果表明,该方法稳定可靠,降低了传统的环形子孔径拼接干涉检测方法中对导轨的高精度要求.  相似文献   

12.
王孝坤 《中国光学》2016,9(1):130-136
针对大口径离轴凸非球面面形检测的困难,本文将光学系统波像差检验技术与子孔径拼接干涉技术相结合,提出了凸非球面系统拼接检测方法。对该方法的基本原理和具体实现过程进行了分析和研究,并建立了合理的子孔径拼接数学模型。当离轴三反光学系统的主镜和三镜加工完成以后,对整个系统进行装调和测试,并依次测定光学系统各视场的波像差分布,通过综合优化子孔径拼接算法和全口径面形数据插值可以求解得到大口径非球面全口径的面形信息,从而为非球面后续加工和系统的装调提供了依据和保障。结合工程实例,对一口径为287 mm×115 mm的离轴非球面次镜进行了系统拼接测试和加工,经过两个周期的加工和测试,其面形分布的RMS值接近1/30λ(λ=632.8 nm)。  相似文献   

13.
非球面的非零位检测较其零位检测而言具有更强的通用性,但非零位检测偏离了零位条件,所产生的回程误差给被测非球面的面形重构带来一定困难。针对非球面非零位检测中回程误差的校正与面形重构问题,提出了基于检测系统理论建模的非球面面形逆向求解技术。该方法对实际检测系统进行理论建模,设置被测面面形为变量,以实际检测到的波前作为目标函数,通过拟合优化得到的结果进而重构出被测面面形。对逆向优化重构技术进行了仿真验证、实际检测和误差分析,实际测量口径为101.0mm的凹抛物面反射镜,检测结果与标准零位法测得结果一致,峰谷值和均方根值误差分别优于λ/20和λ/50。  相似文献   

14.
将光学系统波像差检验技术与子孔径拼接测试技术相融合提出了凸非球面系统拼接检测方法,对该方法的原理和实现步骤进行了分析和研究,并建立了合理的子孔径拼接数学模型.依次利用计算机控制光学表面成形技术和磁流变抛光技术对一包含大口径凸非球面的离轴三反光学系统的各反射镜进行加工,并对整个系统进行装调和测试.测定光学系统各视场的波像差分布,通过综合优化子孔径拼接算法和全口径面形数据插值求解得到大口径凸非球面全口径的面形信息.结合工程实例,对一口径为292mm×183 mm的离轴非球面次镜进行了系统拼接测试和加工,其最终面形分布的均方根值为0.017λ(λ=632.8 nm).  相似文献   

15.
子孔径拼接检测光学系统波前机械定位误差补偿算法   总被引:3,自引:0,他引:3  
汪利华  吴时彬  任戈  谭毅  杨伟 《光学学报》2012,32(1):112003-126
为了实现大口径光学系统波前子孔径拼接干涉测量,保证子孔径采样数据准确定位,提出了子孔径拼接定位补偿算法。介绍了该算法原理,分析了该算法子孔径定位误差补偿能力。首先根据被检光学系统和子孔径口径大小规划出采样子孔径布局,在子孔径采样装置机械精度误差范围内对子孔径进行拼接,根据所求子孔径定位误差补偿系数和调整误差系数,得到被检全孔径波前,完成大口径光学系统波前的拼接检测。通过仿真验证了该算法的可行性,在机械平移定位精度为1 mm和转动角定位精度为0.5°时,用该算法实验检测口径为200 mm的光学系统平面波前。检测结果表明该算法稳定可靠,能有效补偿机械精度引起的子孔径定位误差,从而可放宽对机械定位精度的要求。  相似文献   

16.
 为了能够精确地完成对大口径高陡度非球面在细磨和抛光过程中的测量,提出了一种将子孔径拼接技术和补偿技术相结合的检测方法。介绍了该方法的基本原理,建立了合理的数学模型,编制了拼接计算软件。利用该方法对一外形尺寸为400 mm×300 mm的高次离轴非球面进行了测试,通过最小二乘法拟合消去各子孔径相对基准子孔径的调整误差以及整个系统的装调定位误差,得到了准确的全孔径面形分布。对实验精度和误差来源进行了分析,并将拼接面形与全孔径测量面形相对比,二者是一致的。  相似文献   

17.
非零位检测凸非球面反射镜的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王孝坤 《应用光学》2012,33(1):124-128
在简要总结各种检测凸非球面方法优缺点的基础上,提出了利用部分补偿法和子孔径拼接干涉检测凸非球面的新方法。分别研究和分析了这两种非零位检测非球面方法的基本原理和基础理论;设计并制作了部分补偿器件,并对其系统误差进行了标定;开发了综合优化和误差均化的子孔径拼接算法;设计并研制了两种方法都适用的检测装置。并结合实例对一口径为130 mm的碳化硅凸非球面分别进行了部分补偿检测和子孔径拼接测量,这两种方法测量所得的全口径面形分布是一致的,其PV值和RMS值的偏差仅为0.010 和 0.002 (=0.632 8 m)。从而提供了两种非零位补偿测试凸非球面的手段。  相似文献   

18.
为了提高大口径光学元件子孔径拼接测量的检测精度,提出一种平面绝对测量技术,修正子孔径拼接过程中产生的系统误差。利用改进的三面互检法获得参考平面的面形数据,采用这些测量数据构建基于Zernike多项式的参考面面形误差修正波面,在拼接过程中运用误差修正波面对获得的子孔径测量数据进行实时修正,并与全口径直接测量结果进行对比,结果PV(peak value,PV,峰谷值)误差从0.072 1 减少到0.028 6 。结果表明该方法有效减少了参考平面系统误差对拼接测量精度的影响,提高了大口径光学元件的检测精度。  相似文献   

19.
利用子孔径拼接法测量大口径凸面反射镜   总被引:2,自引:1,他引:1       下载免费PDF全文
王孝坤 《应用光学》2013,34(1):95-100
在简要分析各种检测大口径凸球面方法优缺点的基础上,提出了利用子孔径测量凸面反射镜的新方法,利用干涉仪标准球面波前依次干涉测定大口径镜面上各个区域的相位分布,通过子孔径拼接算法即可求解得到镜面全口径面形信息。对该方法的基本原理和实现步骤进行了分析和研究,建立了大口径拼接检测算法数学模型,设计并研制了大口径反射镜拼接检验装置。结合实例对加工过程中的口径为300 mm的碳化硅凸面反射镜进行了9个子孔径的拼接干涉测量,并将检测结果与全口径面形测量结果进行对比,两种方法残差的PV值和RMS值分别为0.102 和0.009 (=632.8 nm)。  相似文献   

20.
基于子孔径拼接技术的大尺寸光学材料均匀性检测系统   总被引:1,自引:0,他引:1  
徐新华  王青  宋波  傅英 《光学学报》2012,32(4):412002-124
为实现大尺寸光学材料折射率均匀性的高精度、低成本检测,提出一种基于子孔径拼接技术的干涉绝对测量方法,并研制了一套由Zygo干涉仪、五维气浮调整平台、子孔径拼接软件、计算机等组成的测量计算系统。待测件安放在精密的五维气浮调整架上,通过移动调整架来对各个子孔径区域进行精密检测,再利用子孔径拼接软件自动拼接计算出全口径待测件的光学均匀性分布。对直径为300mm的石英待测件进行了口径为180mm的8个子孔径拼接检测实验,并将拼接所得结果与全口径干涉仪直接测量的结果进行了分析和比较,波面峰谷值相对误差为0.21%,光学均匀性值相对误差为0.23%,精度与大口径干涉仪直接测量的精度相当,实现了绝对检验下的平面类波前子孔径拼接技术的实用化。整套系统集光、机、电、算于一体,操作简便,测量精度高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号