首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of 2,6-bis(3-aminopropylaminocarbonyl)pyridine (1) with 4-tert-butyl-2,6-diformylphenol and 2,5-diformylpyrrole in the presence of Ba(ClO4)2 in EtOH afford barium complexes with asymmetric macrocyclic Schiff bases as soft and hard ligands. The reaction of compound 1 with Cu(OCOCMe3)2 involves closure of a tetrahydropyrimidine ring to give a mononuclear complex, which was structurally characterized by X-ray diffraction analysis.  相似文献   

2.
New tetranuclear compounds have been obtained by reacting binuclear complexes, [Zn2L n (μ-OH)(H2O)2](ClO4)2, with sodium dicyanamide (HL n are end-off bicompartmental ligands resulting from condensation between 2,6-diformyl-p-cresol with N,N-dimethyl-ethylenediamine or 2-aminomethyl-pyridine). The complexes, [{L1(μ-OH)Zn2}(μ 1,5-dca)2{Zn2(μ-OH)L1}](ClO4)2 (1) and [{Zn2L2(μ 3-OH)(dca)}2](ClO4)2?·?2H2O (2), have been characterized by single-crystal X-ray diffraction. The angular nature of the bridging dicyanamido induces the “M” shape of the tetranuclear cationic unit in 1. The tetranuclear cation, because of its particular shape, acts as a receptor toward one perchlorate ion, which is hydrogen bonded to the hydroxo groups. This tetranuclear unit in 2 has a defective heterocubane structure. The luminescence properties of the new tetranuclear complexes have been investigated.  相似文献   

3.
Extraction of polymer (1), formed in the reaction of CoCl2 with KOOCBut, with boiling hexane gives crystals of hexamer Co63-OH)2(OOCBu1)10(HOOCBu1)4 (2). According to data of X-ray study, four Co11 atoms in the hexanuclear molecule2 have an octahedral ligand environment and two Co11 atoms have a tetrahedral one. Dissolution of polymer1 in EtOH results in its splitting into Co43-OH)2(OOCBu1)6(HOEt)6 tetramers (3). In molecule3, two asymmetric dimeric (η2-OOCBut)(EtOH)Co(μ-OOCBut)Co(HOEt)2 fragments are bound by two tridentate bridging OH groups. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1773–1778, September, 1999.  相似文献   

4.
A new series of organo-titanium complexes have been prepared from the reaction between Ti(NMe2)4 and C2-symmetric ligands, (R,R)-11,12-bis(pyrrol-2-ylmethyleneamino)-9,10-dihydro-9,10-ethanoanthracene (1H2), and (R,R)-bis(diphenylthiophosphoramino)-9,10-dihydro-9,10-ethanoanthracene (2H2), (R,R)-11,12-bis(mesitylenesulphonylamino)-9,10-dihydro-9,10-ethanoanthracene (3H2) and (R,R)-bis(diphenylthiophosphoramino)-1,2-cyclohexane (4H2). Treatment of Ti(NMe2)4 with 1 equiv of 1H2 gives, after recrystallization from a benzene solution, the binuclear double helicate titanium amide (1)2[Ti(NMe2)2]2⋅(5) in 71% yield. While under similar reaction conditions, reaction of Ti(NMe2)4 with 1 equiv of 2H2, 3H2 or 4H2 gives, after recrystallization from a toluene or benzene solution, the mononuclear single helicate titanium amides (2)Ti(NMe2)2 (6), (3)Ti(NMe2)2 (7) and (4)Ti(NMe2)2 (8), respectively, in good yields. All new compounds have been characterized by various spectroscopic techniques, and elemental analyses. The solid-state structures of complexes 5-8 have further been confirmed by X-ray diffraction analyses. The titanium amides are active catalysts for the polymerization of rac-lactide, leading to the isotactic-rich polylactides.  相似文献   

5.
Eight new antimony (III) complexes containing dithiocarbamate ligands (R2NCS2)2SbBr [R2NCS2 = OC4H8NCS2 (1), C2H5NC4H8NCS2 (2), Me2NCS2 (3), C4H8NCS2 (4)] and (R2NCS2)3Sb[R2NCS2 = C5H10NCS2 (5), Bz2NCS2 (6), Et2NCS2 (7), (HOCH2CH2)2NCS2 (8)] have been synthesized by the reactions of antimony (III) halides with dithiocarbamate ligands in 1:2 or 1:3 stoichiometries. All the complexes have been characterized by elemental analysis, melting point as well as spectral [IR and NMR (1H and 13C)] studies. The crystal structures of complexes 1, 5 and 8 have been determined by X-ray single crystal diffraction, and their electrochemical character has also been studied.  相似文献   

6.
《印度化学会志》2021,98(10):100168
The three new Cobalt(II) complexes [Co(L1)2(H2O)2] (1), [Co(L2)2(H2O)2] (2), and [Co(L3)2(H2O)2] (3) have been synthesized by interaction of acyl pyrazolone ligands, 4-(4-chlorobenzoyl)3-methyl1-phenyl1H-pyrazole5(4H)-one (HL1), 4-(4-chlorobenzoyl)1-(3-chlorophenyl)3-methyl1H-pyrazole5(4H)-one (HL2) and 5-methyl4-(4-methylbenzoyl)2-phenyl2,4-dihydro3H-pyrazole3-one (HL3) with CoCl2.6H2O. The complexes were screened using FTIR, UV–Vis, TGA, and Single Crystal X-ray diffraction spectroscopic techniques. A relative study of the ligands’ FTIR spectra and their metal complexes reveal the formation, sifting, and disappearance of several bands during complexation. Other interpretations stipulated that these three complexes are mononuclear and exhibited octahedral geometry around Co2+.Triclinic crystal system, Distortion in Octahedral geometry, and Intermolecular hydrogen bonding confirmed by Single-crystal XRD analysis of [Co(L3)2(EtOH)2] complex.  相似文献   

7.
在微波辐射条件下合成了两种新的离子液体金属配合物[Ni(m-HNDA)2(H2O)4](1),[Zn(m-HNDA)2(H2O)4]·H2O(2),用元素分析、红外光谱、紫外光谱对它们进行了表征,通过X射线单晶衍射测定了它们的晶体结构.在晶体结构中,标题物通过基团间的嵌合作用,π-π相互作用和分子间氢键自组装成了三维网状的多孔结构.由氢键和π-π相互作用的强弱推测标题物的稳定性次序2>1,与实测热稳定性次序完全吻合;电化学性质表明,金属的配位改变了配体的循环伏安性质.另外,两种配合物可在水溶液中高选择性的识别氟离子.  相似文献   

8.
Reactions of 1,2,5,6,8,10-hexamethylheptalene (1) and its bond isomer, 1,4,5,6,8,10-hexamethylheptalene (2), with tricarbonylchromium complexes L{in3}Cr(CO){in3} (L=NH{in3} and Py) have been investigated. Thermodynamically less stable complex 1 exhibits higher reactivity with respect to Py{in3}Cr(CO){in3}/BF{in3} · Et{in2}O under the conditions of Öfele's reaction than complex2. At 10–30 °C, the Cr(CO){in3} group is coordinated to the asymmetrically substituted ring, which is accomplished by the shift of double bonds in the ligand, to afford tricarbonyl-[1,4,5,6,8,10-hexamethyl-{su6}-(10a, 1–5)heptalene]-chromium (6) as the only mononuclear complex. Under more drastic conditions (Raush's reaction, 80 °C),1 2 interconversion proceeds faster than the reaction of individual bond isomers with coordinatively unsaturated hot particles (solv){inn}Cr(CO){in3}. In this case, all of the four possible isomeric mononuclear complexes (6–9) and two binuclear complexes (10 and 11) are formed. The structures of complexes 6–11 have been studied by NMR and mass spectrometry, the structure of6 has been established by X-ray diffraction analysis. Heating a solution of6 in octane at 115 °C results in the isomerization of6 into complex7 through the intracycle 1,2-shift of the Cr(CO){in3} group and also in its conversion into complex8, which is the first example of interring {su6}{su6}-haptotropic rearrangement in nonplanar seven-membered -systems.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2220–2226, December, 1994.We would like to thank N. S. Kulikov for measuring mass spectra and L. A. Aslanov for helpful discussion of the results of X-ray diffraction analysis.The Research Group from the Moscow State University gratefully acknowledges the support of this work by the International Science Foundation (Grant No. MQ 5000) and the Russian Foundation for Basic Research (Project No. 94-03-08325).  相似文献   

9.
Mechanochemical reactions of inorganic polymers 1 [Mo3Q7Br4] (Q = S or Se) with sodium acetylacetonate hydrate lead to excision of the Mo3Q7 4+ cluster core giving rise to the cationic complexes [Mo3Q7(acac)3]+. Extraction of the reaction mixture with acetone followed by recrystallization from a benzene-hexane mixture afforded the {[Mo3S7(CH3COCHCOCH3)3]Br}·2C6H6 (1) and {[Mo3Se7(CH3COCHCOCH3)3]Br}· · 2C6H6 (2) complexes. The structures of complexes 1 and 2 were studied by IR and 1H NMR spectroscopy and X-ray diffraction. Compound 1 was characterized by electrospray mass spectrometry. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 1895–1898, November, 2006.  相似文献   

10.
Five new mixed ligand coper(II) complexes, viz. [Cu(SAA)(H2O)] (1), [Cu(SAA)(MeImH)] (2), [Cu(SAA)(EtImH)] (3), [Cu(SAA)(BenzImH)] (4) and [Cu(SAA)(MebenzImH)] (5), where SAA = salicylideneanthranilic acid, MeImH = 2-methylimidazole, EtImH = 2-ethylimidazole, BenzImH = benzimidazole, MebenzImH = 2-methylbenzimidazole, have been synthesized and characterized by means of elemental analysis, FAB mass spectrometry, magnetic susceptibility, X-band EPR, electronic spectroscopy, IR and cyclic voltammetry. The frozen solution EPR spectra of the complexes have shown axial features. Single crystal X-ray analysis of 2 and 3 has revealed the presence of a distorted square planar geometry (N2O2) in the complexes. The superoxide dismutase (SOD) activity of the present complexes has also been measured and discussed.  相似文献   

11.
The transmetalation reaction between [(η(7) -C(7) H(7) )ZrCl(tmeda)] (1; tmeda=N,N,N',N'-tetramethylethylenediamine) and various phospholide anions leads to a new class of mixed sandwich complexes: [(η(7)-C(7)H(7))Zr(η(5)-C(4)PMe(4))] (2), [(η(7)-C(7)H(7))Zr(η(5)-C(4)PH(2)Me(2))] (3) and [(η(7)-C(7)H(7))Zr(η(5)-C(4)PPhHMe(2))] (4). The presence of Lewis basic phosphorus atoms and Lewis acidic zirconium atoms allows ambiphilic behaviour to be observed, and X-ray diffraction analysis reveals dimeric arrangements for 2 and 3 with long intermolecular Zr-P bonds, whereas 4 remains monomeric in the solid state. DFT calculations indicate that the metal-phosphorus interaction is weak, and accordingly, complexes 2-4 act as monodentate ligands upon reaction with [W(CO)(5)(thf)]. The resulting complexes [W(CO)(5)(L)] 5-7 (L=2-4) were studied by IR spectroscopy and compared with the [W(CO)(5) ] complex 9, containing the phosphane-functionalised trozircene [(η(7)-C(7)H(7))Zr(η(5)-C(5)H(4)PPh(2))] (8). They all show a close resemblance to simple phosphanes, such as PMe(3) , although molecular orbital analysis of 2 reveals that the free electron pair in the phosphatrozircenes is not the HOMO. Four equivalents of 2 can replace 1,4-cyclooctadiene (COD) in [Ni(cod)(2)] to form the homoleptic, distorted tetrahedral complex [Ni{2}(4)] (10).  相似文献   

12.
Six new organoantimony(V) complexes containing various isomers of fluoromethylbenzoate ligands [RC6H3COO]2SbPh3 and [RC6H3COO]SbPh4 [R = 3-F-4-(CH3) (1, 4), 4-F-2-(CH3) (2, 5), 5-F-2-(CH3) (3, 6)] have been synthesized by the reactions of triphenylantimony(V) dichloride or tetraphenylantimony(V) bromide with various isomers of fluoromethylbenzoate ligands in 1:2 or 1:1 stoichiometries. All the complexes have been characterized by elemental analysis, IR and NMR [1H, 13C and 19F] studies. The crystal structures of complexes 1, 3, 4, 5 and 6 have been determined by X-ray single crystal diffraction. The structure of complexes show that the five-coordinated antimony(V) atom adopts a distorted trigonal bipyramidal geometry. Furthermore, weak but significant intermolecular C–H···O, C–H···F hydrogen bonds, C–H···pi stacking lead to aggregation and assembly of these complexes into 1D and 2D supramolecular frameworks.  相似文献   

13.
The reaction of NiCl2·6H2O with Me3CCOOH and KOH taken in a molar ratio of 1:2:2 in water afforded the nonanuclear antiferromagnetic complex Py2Ni2(Me3CCOOH)2(OOCCMe3)2(μ-OOCCMe3)2(μ-OH2), which apparently contains NiII and NiIII atoms. The complex was isolated by extraction with CH2Cl2, benzene, or hexane. The reactions of this complex with pyridine bases (pyridine (Py), 3,4-lutidine (Lut), and nicorandil (Nic)) gave the adducts L4Ni2(OOCCMe3)2(μ-OOCCMe3)2(μ-OH) (L=Py, Lut, or Nic, respectively). According to magnetic measurements, intramolecular ferromagnetic exchange interactions in these adducts are complemented by intermolecular antiferromagnetic interactions. Pyrolysis of the pyridine adduct in air or under an inert atmosphere in xylene yielded the antiferromagnetic complex Py2Ni2(Me3CCOOH)2(OOCCMe3)2(μ-OOCCMe3)2(μ-OH2), which contains NiII atoms. The structures of all the complexes synthesized were established by X-ray diffraction analysis. The electronic absorption spectra of these compounds are considered. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 725–738, April, 1998.  相似文献   

14.
Rhodium(I) complexes of acceptor substituted N-heterocyclic carbenes were obtained either by transmetalation from the corresponding Ag(I) complexes or by thermal decomposition of corresponding pentafluorobenzene carbene adducts. All complexes were fully characterized by means of NMR- and mass spectroscopy. Compounds 5, 6, 7 and 11 were although characterized by single-crystal X-ray analysis. The relative σ-donor/π-acceptor strength of the NHC ligands was determined by means of IR spectroscopy. Dimerisation behaviour of Rh carbonyl complexes was studied.  相似文献   

15.
Cationic methyl complex of rhodium(III), trans-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] (1) is prepared by interaction of trans-[Rh(Acac)(PPh3)2(CH3)I] with AgBPh4 in acetonitrile. Cationic methyl complexes of rhodium(III), cis-[Rh(Acac)(PPh3)2 (CH3)(CH3CN)][BPh4] (2) and cis-[Rh(BA)(PPh3)2(CH3)(CH3CN)][BPh4] (3) (Acac, BA are acetylacetonate and benzoylacetonate, respectively), are obtained by CH3I oxidative addition to rhodium(I) complexes [Rh(Acac)(PPh3)2] and [Rh(BA)(PPh3)2] in acetonitrile in the presence of NaBPh4. Complexes 2 and 3 react readily with NH3 at room temperature to form cis-[Rh(Acac)(PPh3)2(CH3)(NH3)][BPh4] (4) and cis-[Rh(BA)(PPh3)2(CH3)(NH3)][BPh4] (5), respectively. Complexes 1-5 were characterized by elemental analysis, 1H and 31P{1H} NMR spectra. Complexes 1, 2, 3 and 4 were characterized by X-ray diffraction analysis. Complexes 2 and 3 in solutions (CH2Cl2, CHCl3) are presented as mixtures of cis-(PPh3)2 isomers involved into a fluxional process. Complex 2 on heating in acetonitrile is converted into trans-isomer 1. In parallel with that isomerization, reductive elimination of methyl group with formation of [CH3PPh3][BPh4] takes place. Replacement of CH3CN in complexes 1 and 2 by anion I yields in both cases the neutral complex trans-[Rh(Acac)(PPh3)2(CH3)I]. Strong trans influence of CH3 ligand manifests itself in the elongation (in solid) and labilization (in solution) of rhodium-acetonitrile nitrogen bond.  相似文献   

16.
Three new propanedithiolate-type iron–sulfur complexes containing tris(aromatic)phosphine ligands, [{(μ-SCH2)2CH2}Fe2(CO)5L] (L?=?P(PhOMe-p)3, 1; P(PhMe-p)3, 2; P(PhF-p)3, 3), have been prepared through carbonyl substitution in the presence of Me3NO. The new complexes 1–3 were characterized by elemental analysis, IR, 1H, 13C{1H}, and 31P{H} NMR spectra. The molecular structures of 1–3 were unequivocally determined by single crystal X-ray diffraction, in which the tris(aromatic)phosphine coordinated to Fe resides in an apical position of the pseudo-square-pyramidal geometry. IR spectroscopy and X-ray crystallographic analysis for 1–3 have indicated that the highly electron rich tris(aromatic)phosphine ligands (where the corresponding electron-donating abilities display the following order of P(PhOMe-p)3?>?P(PhMe-p)3?>?P(PhF-p)3) result in a considerable red shift of the CO-stretching frequencies and a clear change of the Fe–Fe bond distances in 1–3.  相似文献   

17.
The reaction of pyridine-2,6-dicarbaldehyde or 2,6-diacetylpyridine with 1,2-bis(o-aminophenylthio)ethane (1) in acetonitrile in the presence of stoichiometric amounts of iron(II) perchlorate gave the complexes [(pyN3S2)FeII(ClO4)2] (4) and [(pyN3Me2S2)FeII(ClO4)2] (5) of the 15-membered N3S2 macrocyclic ligands, pyN3S2 ?=?{6,7-dihydro-15,19-nitrilobenzo(e,p)(1,4,7,15)dithiadiazacyclo-heptadecine-N,N′,N″,S,S′} and pyN3Me2S2?=?{6,7-dihydro-16,18-dimethyl-15,19-nitrilobenzo(e,p)(1,4,7,15)dithiadiazacyclo-heptadecine-N,N′,N″,S,S′}, respectively. Physical measurements led to the conclusion that these complexes contained seven-coordinate iron(II) and a single-crystal X-ray examination of 4 confirmed this. Coordination of the Fe(II) center in 4 is best described as distorted pentagonal-bipyramidal with the three nitrogen atoms and two sulfur donors of the macrocycle defining the pentagonal plane and the perchlorate ions occupying axial positions. Room temperature (293?K) magnetic moments of 4 and 5 (μ eff?=?4.9 and 4.7 B.M., respectively) are close to the value predicted for high-spin d6 systems.  相似文献   

18.
New dinuclear complexes containing CuII atoms in the cavity of a macrocyclic Schiff base were prepared by template condensation of 4-tert-butyl-2,6-diformylphenol with 1,3-diaminopropane in the presence of CuII trimethylacetate and chloride as well as by extra-ligand exchange. The mononuclear CuII complex with two 1,3-diaminopropane molecules can serve as an intermediate in this template synthesis. The reaction of CuII trimethylacetate with the unsymmetrical macrocyclic Schiff base synthesized earlier afforded a new dinuclear copper(ii) complex with the amine and imine nitrogen atoms in the coordination sphere. The structures of the new complexes were established by X-ray diffraction analysis and studied by the density functional theory (gradient-corrected PBE functional, TZ2p basis set).  相似文献   

19.
Abstract

Two iron(II)-rhenium(IV) compounds of general formula [FeII(dmf)6][ReIVX6] [X = Cl (1) and Br (2); dmf = N,N-dimethylformamide] have been prepared and characterized. X-ray powder diffraction measurements on samples of 1 and 2 support the same structure for both systems. The crystal structure of 1 was determined by single-crystal X-ray diffraction. 1 crystallizes in the triclinic system with space group Pī. Each iron(II) is six-coordinate and bonded to six oxygens from six dmf molecules building a distorted octahedral environment. Rhenium(IV) is six-coordinate by six halide anions in an almost regular octahedral geometry. The magnetic properties were investigated from variable-temperature magnetic susceptibility measurements performed on microcrystalline samples of 1 and 2, whose experimental data were reproduced by a model of two isolated paramagnetic centers [S = 2 (FeII) and S = 3/2 (ReIV)] with large values of zero-field splitting (zfs) parameter.  相似文献   

20.
The reaction of pyrrole-2,5-dicarbaldehyde (1) with o-phenylenediamine (2) in anhydrous EtOH afforded a [1+1]-condensation product, viz., Schiff"s base. The structure of the latter was established by NMR spectroscopy and X-ray diffraction analysis. The reaction of this product or a mixture of 1 and 2 with Ni9(n-OOCBut)12(HOOCBut)4(4-OH)3(3-OH)3 in MeCN in the presence of AcOH gave rise to an antiferromagnetic binuclear complex. According to the X-ray diffraction data, the macrocycle in the latter complex is a [2+2]-condensation product of compounds 1 and 2, eff ranging from 0.569 to 2.614 B (2—301 K), –2J = 360 cm–1. The Ni2(OAc)2 fragment is located in the central cavity of the macrocycle. The structures of the condensation products are discussed based on the results of DFT quantum-chemical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号