首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
A dimeric complex of trivalent europium [Eu2Cl4(bc)2(ptpy)2] ( 1 ), containing the separate ligands 4'-phenyl-2,2':6',2''-terpyridine (ptpy) and benzoate (bc) and a one-dimensional double strand coordination polymer of the composition 1[EuCl2(cptpy)] ( 2 ) with 4-[2,2':6',2''-terpyridin]-4'-yl-benzoate (cptpy) were obtained. The products exhibit structural similarities despite the character of joint and separate functionality of the ligands. The dimer 1 shows photoluminescence with high quantum yield [61(2) %]. Eu3+ emission lifetime is 1.493(1) ms at room temperature and rises to 1.649(1) ms upon cooling to 77 K.  相似文献   

2.
A series of cobalt(II) complexes having terpyridine derivatives such as 2,2:6,2″-terpyridine (1), 4,4,4″-tBu3-2,2:6,2″-terpyridine (2), 5,5″-Me2-2,2:6,2″-terpyridine (3), 6,6″-Me2-2,2:6,2″-terpyridine (4) and 6,6″-(3,5-Me2C6H3)2-2,2:6,2″-terpyridine (5) was synthesized. The structures of 1, 3, and 4 were confirmed by X-ray crystallography. The coordination sphere around the cobalt center in 1 can be described as pseudo square pyramidal. On the other hand, complex 4 has pseudo trigonal bipyramidal structure. Upon activation with d-MAO (dried-methylaluminoxane), these complexes showed high activities for the polymerization of norbornene (NBE). In particular, polymerization of NBE with 4/d-MAO system at room temperature resulted in quantitative yield within several hours to give the polymers with relatively narrow molecular weight distributions and controlled molecular weight. The polymerizations of NBE with these cobalt catalyst systems proceeded in vinyl addition polymerization, which was confirmed by 1H NMR spectra of the resulting polymers.  相似文献   

3.
An octahedral zinc(II) complex of 2,2′:6′,2″-terpyridine (Tpy) and pyridine-2,6-dicarboxylate (Pydc), [Zn(II)(Tpy)(Pydc)·4H2O] was synthesized and its structure was determined by a single-crystal X-ray diffraction. The ligand pyridine-2,6-dicarboxylate coordinated to the zinc(II) ion via two pairs of carboxylate oxygens and one nitrogen atom, whereas 2,2′:6′,2″-terpyridine also contributed three coordination bonds through its nitrogen atoms. [Zn(II)(Tpy)(Pydc)·4H2O] showed luminescence properties between 412 and 435 nm in DMSO. The solid-state octahedral geometry of [Zn(II)(Tpy)(Pydc)·4H2O] was also preserved in solution as confirmed by the observed UV λex = 346. Experimental and theoretical studies indicated that [Zn(II)(Tpy)(Pydc)·4H2O] interacted with amoxicillin. Density functional theory calculations at B3LYP/LanL2dz level of theory suggested that [Zn(II)(Tpy)(pydc)·4H2O] dimer interacts with (2S,5R,6R)-6-{[(2R)-2-amino-2-(4-hydroxyphenyl)-acetyl]amino}-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-24-carboxylic acid (amoxicillin) via highest occupied molecular orbital and lowest unoccupied molecular orbital, π–π interaction, hydrogen bond interaction, and van der Waals forces, thus influencing [Zn(II)(Tpy)(Pydc)·4H2O] properties.  相似文献   

4.
Two approaches to the formation of ruthenium(II) complexes containing ligands with conjugated 2,2′:6′,2″-terpyridine (tpy), alkynyl and bithienyl units have been investigated. Bromination of 4′-(2,2′-bithien-5′-yl)-2,2′:6′,2″-terpyridine leads to 4′-(5-bromo-2,2’-bithien-5′-yl)-2,2′:6′,2″-terpyridine (1), the single crystal structure of which has been determined. The complexes [Ru(1)2][PF6]2 and [Ru(tpy)(1)][PF6]2 have been prepared and characterized. Sonogashira coupling of the bromo-substituent with (TIPS)CCH did not prove to be an efficient method of preparing the corresponding complexes with pendant alkynyl units. The reaction of 4′-ethynyl-2,2′:6’,2″-terpyridine with 5-bromo-2,2′-bithiophene under Sonogashira conditions yielded ligand 2, and the heteroleptic ruthenium(II) complex [Ru(2)(tpy)][PF6]2 has been prepared and characterized.  相似文献   

5.
Sodium and potassium complexes with 4′-(4‴-benzo-15-crown-5)methyloxy-2,2′:6′,2″-terpyridine (L1) and 4′-(4′-benzo-15-crown-5)oxy-2,2′:6′,2″-terpyridine (L2) and heteronuclear Na, K, Ca, and transition metal complexes with L1 were synthesized. The structure of the complexes was proposed on the basis of elemental analysis data, IR spectra, and the results of earlier X-ray diffraction studies of L2, [NaL1NCS], and [Na2{Cu(L1)2}(NCS)3]NCS · CH3CN.  相似文献   

6.
Approaches to the synthesis of organic aurophilic ligands, viz., sulfur-containing 2,2′:6′,2’-terpyridine derivatives, were developed. Complexation reactions of the terpyridine ligands having thiophenol, diaryl disulfide, and alkyl aryl sulfide fragments with Co ii , Ni ii , and Rh iii salts were studied. The structures of the coordination compounds obtained were established based on the elemental analysis data, density functional calculations, and electron spectroscopy. The structure of the complex of 4′-(4-methylsulfanyl)-2,2′:6′,2"-terpyridine with Ni(BF4)2 was also established by X-ray diffraction analysis. A method was proposed for the preparation of gold nanoparticle dimeric aggregates via coordination interactions of the ligands adsorbed on the gold nanoparticle surface with transition metal ions. A degree of nanoparticle aggregation upon their reaction with solutions of complex compounds of aurophilic nitrogen-containing ligands was determined by the concentration of the solution of the complex used.  相似文献   

7.
Bis(5,5″-bis(bromomethyl)-2,2′:6′,2″-terpyridine), bis-4′-(4-bromomethylphenyl)-2,2′:6′,2″-terpyridine and 4-hydroxymethyl-5′,5″-dimethyl-2,2′:6′,2″-terpyridine metal complexes have been used as initiators for the living polymerization of 2-oxazolines and L-lactides. In both cases polymers with controlled molecular weights and narrow molecular weight distributions have been obtained. In-line diode array GPC measurements of iron(II) complexed poly(ethyloxazoline)s showed an unexpected absence of fragmentation. Viscosity experiments demonstrated the differences of the complexed and uncomplexed systems.  相似文献   

8.
在水热条件下,以3,5-二((4''-羧基苄基)氧)苯甲酸(H3bcb)和4''-(4-吡啶基)-2,2'':6'',2"-三联吡啶(PYTPY)为混合配体构筑了2个过渡金属配合物[Co(H2bcb)2(PYTPY)]n1)和[Mn(H2bcb)2(PYTPY)]n2),利用元素分析、红外光谱以及单晶X射线衍射表征其结构。分析表明配合物12为一维链状结构。此外,2个配合物展示了优良的热稳定性。磁化率的测试结果表明,配合物12在2 K和8 K以下时展示了反铁磁相互作用。  相似文献   

9.
The synthesis and structural characterization of a new trimethylplatinum(IV) iodide complex of 4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine ligand L, {PtMe3IL} ( 1 ) is reported. The X-ray crystal structure shows that the terpyridine ligand L binds the platinum(IV) metal center in bidentate fashion, which is well supported by the 1H NMR spectrum of 1 . The complex 1 upon crystallization with 1,4-diiodotetrafluorobenzene (DITFB) forms the halogen bonded complex 1a ( 1· DITFB). The structural investigation shows that 1a exhibits the halogen bonding interaction in which the non-coordinated pyridyl nitrogen acts as halogen bond acceptors by forming I ··· N interaction with iodine atom of DITFB. In addition iodine atom of complex 1 also acts as weak halogen bond acceptor.  相似文献   

10.
在水热条件下,以3,5-二((4''-羧基苄基)氧)苯甲酸(H3bcb)和4''-(4-吡啶基)-2,2'':6'',2"-三联吡啶(PYTPY)为混合配体构筑了2个过渡金属配合物[Co(H2bcb)2(PYTPY)]n(1)和[Mn(H2bcb)2(PYTPY)]n(2),利用元素分析、红外光谱以及单晶X射线衍射表征其结构。分析表明配合物12为一维链状结构。此外,2个配合物展示了优良的热稳定性。磁化率的测试结果表明,配合物12在2 K和8 K以下时展示了反铁磁相互作用。  相似文献   

11.
A Williamson type etherification approach was applied for the reaction of 4′-chloro-2,2′:6′,2′′-terpyridine with a number of well-defined mono- and bis-hydroxy functionalized polymers, namely poly(tetrahydrofuran), poly(2-ethyl-2-oxazoline) and Pluronics®. The resulting terpyridine functionalized polymers were characterized by 1H NMR spectroscopy and SEC, as well as MALDI-TOF-MS demonstrating the successful functionalization. This type of end-functionalized chelating macromolecules could be considered as key candidates for the preparation of metallo-supramolecular polymers via metallo-terpyridine complexation; the principle feasibility was demonstrated by UV-vis titration of iron(II) chloride to bis-terpyridine functionalized poly(tetrahydrofuran).  相似文献   

12.
Polypyridyl ruthenium(II) complexes [RuII(3-bptpy)(dmphen)Cl]ClO4 (1), [RuII(3-cptpy)(dmphen)Cl]ClO4 (2), [RuII(2-tptpy)(dmphen)Cl]ClO4 (3), and [RuII(9-atpy)(dmphen)Cl]ClO4 (4) {where 3-bptpy?=?4′-(3-bromophenyl)-2,2′:6′,2″-terpyridine, 3-cptpy?=?4′-(3-chlorophenyl)-2,2′:6′,2″-terpyridine, 2-tptpy?=?4′-(2-thiophenyl)-2,2′:6′,2″-terpyridine, 9-atpy?=?4′-(9-anthryl)-2,2′:6′,2″-terpyridine, dmphen?=?2,9-dimethyl-1,10-phenanthroline} have been synthesized and characterized. The DNA-binding properties of the complexes with Herring Sperm DNA have been investigated by absorption titration and viscosity measurements. The ability of complexes to break the pUC19 DNA has been checked by gel electrophoresis. The experimental results suggest that all the complexes bind DNA via partial intercalation. The results also show that the order of DNA-binding affinities of the complexes is 4?<?3?<?2?<?1, confirming that planarity of the ligand in a complex is very important for DNA-binding.  相似文献   

13.
Zinc is essential for normal growth and development, and hence selective recognition and detection for zinc has been a significant area of research. Here 4′-(4-methoxyphenyl)-2,2′:6′,2″-terpyridine is described for the ratiometric fluorescence quantification of zinc ion with high selectivity. The fluorescence of 4′-(4-methoxyphenyl)-2,2′:6′,2″-terpyridine at 406?nm was quenched in the presence of zinc, and a new emission band appeared at 452?nm. The ratiometric method for the determination of zinc ion was based on the dual fluorescence measurements at 406 and 452?nm. This fluorescence response is caused by the formation of a 1:1 complex between 4′-(4-methoxyphenyl)-2,2′:6′,2″-terpyridine and the zinc(II) ion. The analytical figures of merit for the protocol were obtained. The linear dynamic range extended for zinc concentrations from 3.0 to 40.0?µmol/L with a limit of detection of 0.28?µmol/L. Zinc was determined in water with satisfactory results.  相似文献   

14.
Lin  F.  Dong  F. Q.  Chen  X. Q.  Zhou  Q. X.  Zhou  Y.  Chen  B. C. 《Russian Journal of Coordination Chemistry》2018,44(12):824-830
Russian Journal of Coordination Chemistry - Two new coordination polymers, namely {[Cu2(DCTP)2](H2O)}n (I) (H2DCTP = 4'-(3,5-dicarboxyphenyl)-4,2':6',4''-terpyridine) and...  相似文献   

15.
In this study, we generated phosphoserine- and phosphothreonine-containing peptide radical cations through low-energy collision-induced dissociation (CID) of the ternary metal?Cligand phosphorylated peptide complexes [CuII(terpy) p M]·2+ and [CoIII(salen) p M]·+ [ p M: phosphorylated angiotensin III derivative; terpy: 2,2':6',2''-terpyridine; salen: N,N '-ethylenebis(salicylideneiminato)]. Subsequent CID of the phosphorylated peptide radical cations ( p M·+) revealed fascinating gas-phase radical chemistry, yielding (1) charge-directed b- and y-type product ions, (2) radical-driven product ions through cleavages of peptide backbones and side chains, and (3) different degrees of formation of [M ?C H3PO4]·+ species through phosphate ester bond cleavage. The CID spectra of the p M·+ species and their non-phosphorylated analogues featured fragment ions of similar sequence, suggesting that the phosphoryl group did not play a significant role in the fragmentation of the peptide backbone or side chain. The extent of neutral H3PO4 loss was influenced by the peptide sequence and the initial sites of the charge and radical. A preliminary density functional theory study, at the B3LYP 6-311++G(d,p) level of theory, of the neutral loss of H3PO4 from a prototypical model??N-acetylphosphorylserine methylamide??revealed several factors governing the elimination of neutral phosphoryl groups through charge- and radical-induced mechanisms.  相似文献   

16.
Cp3Fe4(CO)4(4′-C5H4-2,2′:6′,2″-terpyridine) (abbreviated as Fe4tpyH) reacts with Os3(CO)10(NCMe)2 in hot methylcyclohexane to generate the double cluster (μ-H)Os3(μ,η2-Fe4tpy)(CO)10 (1) and (μ-H)Os3(μ,η3-Fe4tpy)(CO)9 (2). Similar reaction of 4′-(p-FC6H4)-2,2′:6′,2″-terpyridine (abbreviated as FtpyH) and Os3(CO)10(NCMe)2 affords (μ-H)Os3(μ,η2-Ftpy)(CO)10 (3) and (μ-H)Os3(μ,η3-Ftpy)(CO)9 (4). On the other hand, treating the pristine molecule 2,2′:6′,2″-terpyridine (abbreviated as TpyH) with Os3(CO)10(NCMe)2 only isolates (μ-H)Os3(μ,η2-Tpy)(CO)10 (5). These compounds are generated by complexation and C-H bond activation of pyridyl groups on triosmium framework, and have been characterized by IR, NMR, and mass spectroscopies. The structure of 4 is determined by a single-crystal X-ray diffraction study.  相似文献   

17.
The conjugated carboxy-functionalized terpyridyl bimetal ruthenium complex [(tdctpy)Ru(dctpy-(ph)4-dctpy)Ru(tdctpy)][PF6]4 and [2]rotaxane by self-assembly of [(tdctpy)Ru(dctpy-(ph)4-dctpy)Ru(tdctpy)][PF6]4 with β-cyclodextrin are reported as sensitizer for dye-sensitized solar cells (DSSCs), where tdctpy?=?4′-p-tolyl-4,4″-dicarboxy-2,2′?:?6,2″-terpyridine, dctpy?=?4,4″-dicarboxy-2,2′?:?6,2″-terpyridine and dctpy-(ph)4-dctpy represents a bridging ligand where two 4,4″-dicarboxy-2,2′?:?6′,2″-terpyridine units are connected through four phenyl spacers in the 4′-position. The DSSCs fabricated utilizing these materials give typical electric power conversion efficiency of 0.013–0.523% under air mass (AM) 1.5, 100?mW?cm?2 irradiation at room temperature. The terpyridyl bimetal ruthenium complex [(tdctpy)Ru(dctpy-(ph)4-dctpy)Ru(tdctpy)][PF6]4 with conjugated-bridge chains displayed much higher conversion efficiency compared with the carboxy-functionalized terpyridyl monometal ruthenium complex [tdctpy-Ru-(idctpy)][PF6]2, where idctpy?=?4′-p-iodophenyl-4,4″-dicarboxy-2,2′?:?6,2″-terpyridine. [2]Rotaxane displayed the highest electric power conversion efficiency of 0.523% when β-cyclodextrin was introduced into the conjugated terpyridyl bimetal ruthenium complex and formed [2]rotaxane.  相似文献   

18.
A range of 6,6″-disubstituted derivatives of 2,2′: 6,2″-terpyridine have been prepared with the intention of forming macrocycles incorporating the 2,2′: 6′,2-?terpyridyl moiety. A high yield route to 6,6″-bis(methylhydrazino-4′-phenyl-2,2′:6′,2″-terpyridine is described, and a number of complexes of this novel pentadentate ligand have been prepared.  相似文献   

19.
Taking into account previously obtained biological results on some polyheterocyclic compounds (containing different heteroatoms) and in particular on several 8-amino-5-isopropyl-2,2-dimethyl-10-(methylthio)-1,4-dihydro-2H-pyrano[4’’,3’’:4’,5’]pyrido[3’,2’:4,5]thieno[3,2-d]pyrimidines Ia-v we have carried out the synthesis of twentyone 8-amino-5-isobutyl-2,2-dimethyl-10-(methylthio)-1,4-dihydro-2H-pyrano[4’’,3’’:4’,5’]pyrido[3’,2’:4,5]thieno[3,2-d]pyrimidines 6. Therefore we have slightly modified the structure of the previously studied I introducing at C-5 an isobutyl group instead of the previously examined isopropyl ones in order to see if this variation (changing a little the lipophilicity) will affect the biological activity. Furthermore thieno[3,2-d]pyrimidine-8-thione 7 and their S-alkylated 8 were synthesized. Finally by alkylation of 5-isobutyl-2,2-dimethyl-10-thioxo-1,4,10,11-tetrahydro-2H-pyrano[4'',3'':4',5']pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-8(9H)-one 3 with alkyl dichlorides (bifunctional reagents) we realized the cyclization of a thiazole or thiazine ring on the [b] side of the pyrimidine ring with formation of the new condensed pentaheterocyclic systems: pyrano[4'',3'':4',5']pyrido[3',2':4,5]thieno[3,2-d][1,3]thiazolo[3,2-a]pyrimidin-8-one 11 and pyrano[4''',3''':4'',5'']pyrido[3'',2'':4',5']thieno[3',2':4,5]pyrimido[2,1-b][1,3]thiazin-8-one 12. It was found that some of the synthesized compounds showed interesting antimicrobial activity (by agar diffusion method) against some gram-positive and gram-negative bacilli strains.  相似文献   

20.
An efficient synthesis of 4,4″-dinitro-5,5″-dimethyl-2,2′:6′,2″-terpyridine was accomplished. The crystal structures of three different 2,2':6’,2″-terpyridines were determined by x-ray analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号