首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A lower bound on maximum deformation is determined for rigid-plastic structures subjected to time dependent loads. This bound on deformation amalgamates and slightly extends two previous bounds. It is easily calculated based on an assumed velocity field that is kinematically admissible. Comparisons are made between this bound, the complementary upper bound by Robinson[5], and the analytical solution for maximum deformation of five different structural elements. Thus, characteristics of the structure and applied tractions that affect accuracy of the bound are examined. In two cases, the stress field transition from bending at small deformations to membrane stresses at large deformation is demonstrated.  相似文献   

2.
3.
4.
5.
6.
An approximate method based on Lee's extremum principle is introduced to study the large deflections of dynamically loaded plastic structures. As an example, the evolutionary mode of an impulsively loaded rigid-perfectly plastic portal frame is determined and then compared with the experimental results [8] and with the large deflection complete solution obtained previously [9]. It is found that the evolutionary modal solution may approach the complete solution if the modes are appropriately chosen.  相似文献   

7.
8.
9.
In recent years a number of writers have developed theorems which allow the evaluation of bounds on deformation properties of bodies subject to both static and dynamic loading. Some of these results have proved useful to structural designers in assessing structural performance, thereby obviating the need for a complete analysis. In this paper a general theory is described for small strains which brings together results for both quasi-static and dynamic loading, and also provides a theoretical framework within which a wide range of constitutive relationships may be discussed. The material behaviour is included through a functional property of the constitutive relationship which gives a generalization of the concept of maximum complementary work. A new result for impulsively loaded bodies is illustrated by examples involving elastic and elastic perfectly-plastic materials.  相似文献   

10.
11.
This paper presents a numerical method to identify and trace the critical post-collapse response of rigid perfectly-plastic structures. To account for the possibility of multiple equilibrium paths, the critical one is directly identified using the minimum 2nd-order work criterion. Our proposed enhanced sequential limit analysis is formulated as an instance of the challenging class of optimization problems known as a mathematical program with equilibrium constraints (MPEC). This MPEC formulation minimizes the 2nd-order work expression subject to the set of constraints describing the complete complementarity system (in mixed static-kinematic variables) governing simultaneously the two adjacent equilibrium configurations, namely the current one and its neighboring state. We use a nonlinear programming based algorithm, involving relaxation of the complementarity terms, to solve the MPEC. Four numerical examples are provided to illustrate application of the proposed scheme.  相似文献   

12.
13.
14.
In a recent paper [1] it was shown that the evaluation of certain bounding solutions for a structure subjected to cyclic loading was equivalent to assuming that the cycle time Δt was short compared with a stress redistribution time. Comparisons between values which are likely to occur in creep design situations indicated that Δt may often be assumed to be small and the bounding solution may be expected to closely approximate the actual stress history. In this paper the solution for the limiting case when Δt → 0 is evaluated for a class of constitutive relationships which may be expressed in terms of a finite number of state variables. Strain-hardening viscous, visco-elastic and Bailey-Orowan equations are discussed and particular solutions for which the residual stresses remain constant in time are derived. The solution for a non-linear visco-elastic model indicates that, for the stationary cyclic state, the constitutive equation need only predict the creep strain over a discrete number of cycles and need not predict the strains during a cycle. This observation should considerably simplify creep analysis.The solution of a simple example demonstrates the similarity between the predicting of the various constitutive relationships for isothermal problems. In fact they provide virtually identical solutions when expressed in terms of reference stress histories. The finite element solution of a plate containing a hole and subjected to variable edge loading is also presented for a viscous material. The solutions show behaviour which is similar to that of the two bar structure.  相似文献   

15.
Experimental eigenvalues of both square and rectangular clamped flat plates were measured using digital spectrum analysis. Individual mode shapes were recorded experimentally using holographic interferometry. Plate spectra showing the first 35 modes of vibration for each of the square and rectangular plates were recorded, allowing the experimentally determined eigenvalues to be compared with published theoretical predictions. Over 25 modes for a square plate and 16 modes for a rectangular plate with aspect ratio of 2/3 were recorded holographically. Selected recorded mode shapes are compared with beam mode shapes as well as with modified Bolotin mode shapes, both of which are popular assumed mode shapes in current numerical techniques. It was found that both of these assumed mode shapes agree favorably with the experimental results. The beam mode shapes agree better in some modes; the modified Bolotin mode shapes agree more favorably in others.  相似文献   

16.
Experimental eigenvalues of both square and rectangular clamped flat plates were measured using digital spectrum analysis. Individual mode shapes were recorded experimentally using holographic interferometry. Plate spectra showing the first 35 modes of vibration for each of the square and rectangular piates were recorded, allowing the experimentally determined eigenvalues to be compared with published theoretical predictions. Over 25 modes for a square plate and 16 modes for a rectangular plate with aspect ratio of 2/3 were recorded holographically. Selected recorded mode shapes are compared with beam mode shapes as well as with modified Bolotin mode shapes, both of which are popular assumed mode shapes in current numerical techniques. It was found that both of these assumed mode shapes agree favorably with the experimental results. The beam mode shapes agree better in some modes; the modified Bolotin mode shapes agree more favorably in others.  相似文献   

17.
The behaviour of the soil under a dynamically loaded pile toe is studied. The soil is modelled as a fluid saturated porous continuum. The constitutive behaviour of the solid skeleton is described by the elasto-plastic model of Drücker-Prager. The wave propagation is simulated with a dynamical finite-element program.A two-phase model of soil gives useful information about effective stress and pore pressure in the soil. In saturated soil the main wave under the pile toe propagates more downards than in dry soil, due to the higher compressional stiffness in saturated soil. The plastic zone under the pile toe propagates with the velocity of the fast compressional wave. The pore fluid influences the plasticity strongly and can be expected to affect pile driving too.The distribution of effective stress and pore pressure under the pile toe depends on the permeability of the soil and cannot be calculated uniquely from a single-phase calculation. Therefore, a nonlinear soil cannot be modelled correctly as a conventional single-phase material.  相似文献   

18.
Anti-plane cracks in finite functionally graded piezoelectric solids under time-harmonic loading are studied via a non-hypersingular traction based boundary integral equation method (BIEM). The formulation allows for a quadratic variation of the material properties in two directions. The boundary integral equation (BIE) system is treated by using the frequency dependent fundamental solution based on Radon transforms. Its numerical solution provides the displacements and tractions on the external boundary as well as the crack opening displacements from which the mechanical stress intensity factor (SIF) and the electrical displacement intensity factor (EDIF) are determined. Several examples for single and multiple straight and curved cracks demonstrate the applicability of the method and show the influence of the different system parameters.  相似文献   

19.
Optimal design of a rigid-plastic stepped beam is discussed assuming the mode form of motion. Such beam dimensions are sought for which a minimum of local or mean deflection is attained within designs of constant volume. It is assumed that the prescribed kinetic energy is imparted to the structure at the initial instant with free motion occurring afterwards. It is shown that besides three symmetric modes of motion, also the asymmetric modes may exist. An optimal design for asymmetric modes is determined and compared with a respective design for symmetric modes, obtained previously in [1].  相似文献   

20.
Natural frequencies and damping ratios of a structure, with piezo devices bonded on it and shunted with a resistive load, depend on the electrical load itself. Therefore, several tests (experimental or numerical) ought to be carried out in order to determine the resistor which provides the maximum damping ratio for a mode of interest, and in turn the natural frequency of the whole structure. In this paper we present relationships which allow us to predict the modal parameters mentioned above, by using the natural frequencies of the structure when the external electrical circuit of the piezo device is in short or open conditions. Thus, only two tests would be necessary in order to obtain both the maximum damping ratio, introduced by the piezo device, and the natural frequency of the whole system. Besides, under an acceptable approximation, the resistive load, which should be used to obtain the maximum damping, can be obtained from the natural angular frequencies previously derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号