首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an algorithm for the unconstrained two-dimensional cutting problem of rectangular pieces. It proposes the simple block (SB) pattern consisting of simple blocks. The SB pattern is defined recursively. Each cut on the stock plate produces just one simple block. A horizontal cut produces a horizontal block with width equal to that of the leftmost piece in the block. A vertical cut produces a vertical block with length equal to that of the bottommost piece in the block. The algorithm generates the optimal SB pattern recursively, and selects optimally the first piece in each block. It uses upper bound to prune some unpromising branches during the searching process. The computational results indicate that the algorithm is highly efficient in improving material utilization, and the computation time is reasonable.  相似文献   

2.
In this paper we study a two-dimensional non-guillotine cutting problem, the problem of cutting rectangular pieces from a large stock rectangle so as to maximize the total value of the pieces cut. The problem has many industrial applications whenever small pieces have to be cut from or packed into a large stock sheet. We propose a tabu search algorithm. Several moves based on reducing and inserting blocks of pieces have been defined. Intensification and diversification procedures, based on long-term memory, have been included. The computational results on large sets of test instances show that the algorithm is very efficient for a wide range of packing and cutting problems.  相似文献   

3.
The two-dimensional cutting-stock problem consists of laying out a specified list of rectangular pieces on rectangular sheets, in such a way as to minimize the number of sheets used. A pattern is a combination of piece widths whose sum does not exceed the sheet's width. We present a new heuristic algorithm for this problem based on an approach with two phases: strategic phase and tactical phase. The first phase takes a global view of the problem and proposes a list of patterns to the second phase, which in turn is in charge of actually laying out these patterns on sheets. The strategic module relaxes the global problem to a one-dimensional cutting-stock problem and solves it using linear programming, while the tactical module is a recursive algorithm based on repeated knapsack operations and other heuristics.  相似文献   

4.
This paper deals with the problem of minimizing trim loss in cutting rectangular blanks of a single size from a rectangular sheet using orthogonal guillotine cuts. First we prove that we can obtain the unconstrained optimal layout by searching among normal multi-section layouts. Next we present an unconstrained algorithm to search for it. The unconstrained algorithm uses a branch-and-bound method with a tight upper bound. Later we discuss the algorithm for the constrained problem where the blank demand must be met exactly. Finally, the unconstrained algorithm is extended to cope with the blade length constraint. Experimental computations show that the algorithms are extremely efficient.  相似文献   

5.
This paper presents a recursive algorithm for constrained two-dimensional guillotine cutting problems of rectangular items. The algorithm divides a stock plate into a sequence of small rectangular blocks. For the current block considered, it selects an item, puts it at the left-bottom corner of the block, and determines the direction of the dividing cut that divides the unoccupied region of the block into two smaller blocks for further consideration. The dividing cut is either along the upper edge or along the right edge of the selected item. The upper bound obtained from the unconstrained solution is used to shorten the searching space. The computational results on benchmark problems indicate that the algorithm can improve the solutions, and is faster than other algorithms.  相似文献   

6.
A new upper bound for the unconstrained two-dimensional cutting or packing problem is proposed in this paper. The proposed upper bound can be calculated for any size of plate by solving just two knapsack problems at the beginning of the algorithm. In this research, the proposed upper bound was applied to the well known exact cutting algorithm, although it can be used for both cutting and packing applications. The experimental results demonstrate that the new upper bound is very efficient, and reduces the search time required to find an optimal solution.  相似文献   

7.
We consider the problem of guillotine cutting a rectangular sheet into two rectangular pieces without rotations. The question is whether there exists a cutting pattern with given numbers of occurrences of both rectangular pieces. A polynomial time algorithm is described to construct the convex hull of solutions to this problem.  相似文献   

8.
This article presents a branch and bound algorithm for globally solving the nonlinear sum of ratios problem (P). The algorithm works by globally solving a sum of ratios problem that is equivalent to problem (P). In the algorithm, upper bounds are computed by maximizing concave envelopes of a sum of ratios function over intersections of the feasible region of the equivalent problem with rectangular sets. The rectangular sets are systematically subdivided as the branch and bound search proceeds. Two versions of the algorithm, with convergence results, are presented. Computational advantages of these algorithms are indicated, and some computational results are given that were obtained by globally solving some sample problems with one of these algorithms.  相似文献   

9.
This paper presents an approach using a recursive algorithm for packing (?, w)-rectangles into larger rectangular and L-shaped pieces. Such a problem has actual applications for non-guillotine cutting and pallet/container loading. Our motivation for developing the L-approach is based on the fact that it can solve difficult pallet loading instances. Indeed, it is able to solve all testing problems (more than 20 000 representatives of infinite equivalence classes of the literature), including the 18 hard instances unresolved by other heuristics. We conjecture that the L-approach always finds optimum packings of (?, w)-rectangles into rectangular pieces. Moreover, the approach may also be useful when dealing with cutting and packing problems involving L-shaped pieces.  相似文献   

10.
《Optimization》2012,61(7):989-1002
The rectangular packing problem aims to seek the best way of placing a given set of rectangular pieces within a large rectangle of minimal area. Such a problem is often constructed as a quadratic mixed-integer program. To find the global optimum of a rectangular packing problem, this study transforms the original problem as a mixed-integer linear programming problem by logarithmic transformations and an efficient piecewise linearization approach that uses a number of binary variables and constraints logarithmic in the number of piecewise line segments. The reformulated problem can be solved to obtain an optimal solution within a tolerable error. Numerical examples demonstrate the computational efficiency of the proposed method in globally solving rectangular packing problems.  相似文献   

11.
高岳林  井霞 《计算数学》2013,35(1):89-98
提出了求解一类线性乘积规划问题的分支定界缩减方法, 并证明了算法的收敛性.在这个方法中, 利用两个变量乘积的凸包络技术, 给出了目标函数与约束函数中乘积的下界, 由此确定原问题的一个松弛凸规划, 从而找到原问题全局最优值的下界和可行解. 为了加快所提算法的收敛速度, 使用了超矩形的缩减策略. 数值结果表明所提出的算法是可行的.  相似文献   

12.
In this paper, we propose a memory state feedback model predictive control (MPC) law for a discrete-time uncertain state delayed system with input constraints. The model uncertainty is assumed to be polytopic, and the delay is assumed to be unknown, but with a known upper bound. We derive a sufficient condition for cost monotonicity in terms of LMI, which can be easily solved by an efficient convex optimization algorithm. A delayed state dependent quadratic function with an estimated delay index is considered for incorporating MPC problem formulation. The MPC problem is formulated to minimize the upper bound of infinite horizon cost that satisfies the sufficient conditions. Therefore, a less conservative sufficient conditions in terms of linear matrix inequality (LMI) can be derived to design a more robust MPC algorithm. A numerical example is included to illustrate the effectiveness of the proposed method.  相似文献   

13.
The two-dimensional orthogonal non-guillotine cutting stockproblem (NGCP) appears in many industries (e.g. the wood andsteel industries) and consists of cutting a rectangular mastersurface into a number of rectangular pieces, each with a givensize and value. The pieces must be cut with their edges alwaysparallel to the edges of the master surface (orthogonal cuts).The objective is to maximize the total value of the pieces cut. New upper bounds on the optimal solution to the NGCP are described.The new bounding procedures are obtained by different relaxationsof a new mathematical formulation of the NGCP. Various proceduresfor strengthening the resulting upper bounds and reducing thesize of the original problem are discussed. The proposed newupper bounds have been experimentally evaluated on test problemsderived from the literature. Comparisons with previous boundingprocedures from the literature are given. The computationalresults indicate that these bounds are significantly betterthan the bounds proposed in the literature.  相似文献   

14.
The maximum edge weight clique (MEWC) problem, defined on a simple edge-weighted graph, is to find a subset of vertices inducing a complete subgraph with the maximum total sum of edge weights. We propose a quadratic optimization formulation for the MEWC problem and study characteristics of this formulation in terms of local and global optimality. We establish the correspondence between local maxima of the proposed formulation and maximal cliques of the underlying graph, implying that the characteristic vector of a MEWC in the graph is a global optimizer of the continuous problem. In addition, we present an exact algorithm to solve the MEWC problem. The algorithm is a combinatorial branch-and-bound procedure that takes advantage of a new upper bound as well as an efficient construction heuristic based on the proposed quadratic formulation. Results of computational experiments on some benchmark instances are also presented.  相似文献   

15.
Homogenous T-shape (HTS) cutting patterns are welcomed when the two-phase process is used to produce rectangular pieces from the stock plate, where the plate is cut into homogenous strips at the first phase, and the strips are divided into pieces at the second phase. A heuristic is presented for generating constrained HTS patterns, where the objective is to maximize the pattern value that is equal to the total value of the included pieces, observing the upper bound constraint on the frequency of each piece type. The heuristic is based on dynamic programming and branch-and-bound techniques. It can yield solutions close to optimal with short computation time. By providing good initial solutions, the heuristic can greatly improve the time efficiency of an existing exact branch-and-bound algorithm.  相似文献   

16.
In this paper, we propose approximate and exact algorithms for the double constrained two-dimensional guillotine cutting stock problem (DCTDC). The approximate algorithm is a two-stage procedure. The first stage attempts to produce a starting feasible solution to DCTDC by solving a single constrained two dimensional cutting problem, CDTC. If the solution to CTDC is not feasible to DCTDC, the second stage is used to eliminate non-feasibility. The exact algorithm is a branch-and-bound that uses efficient lower and upper bounding schemes. It starts with a lower bound reached by the approximate two-stage algorithm. At each internal node of the branching tree, a tailored upper bound is obtained by solving (relaxed) knapsack problems. To speed up the branch and bound, we implement, in addition to ordered data structures of lists, symmetry, duplicate, and non-feasibility detection strategies which fathom some unnecessary branches. We evaluate the performance of the algorithm on different problem instances which can become benchmark problems for the cutting and packing literature.  相似文献   

17.
The paper presents a tight Lagrangian bound and an efficient dual heuristic for the flow interception problem. The proposed Lagrangian relaxation decomposes the problem into two subproblems that are easy to solve. Information from one of the subproblems is used within a dual heuristic to construct feasible solutions and is used to generate valid cuts that strengthen the relaxation. Both the heuristic and the relaxation are integrated into a cutting plane method where the Lagrangian bound is calculated using a subgradient algorithm. In the course of the algorithm, a valid cut is added and integrated efficiently in the second subproblem and is updated whenever the heuristic solution improves. The algorithm is tested on randomly generated test problems with up to 500 vertices, 12,483 paths, and 43 facilities. The algorithm finds a proven optimal solution in more than 75% of the cases, while the feasible solution is on average within 0.06% from the upper bound.  相似文献   

18.
This paper presents two new dynamic programming (DP) algorithms to find the exact Pareto frontier for the bi-objective integer knapsack problem. First, a property of the traditional DP algorithm for the multi-objective integer knapsack problem is identified. The first algorithm is developed by directly using the property. The second algorithm is a hybrid DP approach using the concept of the bound sets. The property is used in conjunction with the bound sets. Next, the numerical experiments showed that a promising partial solution can be sometimes discarded if the solutions of the linear relaxation for the subproblem associated with the partial solution are directly used to estimate an upper bound set. It means that the upper bound set is underestimated. Then, an extended upper bound set is proposed on the basis of the set of linear relaxation solutions. The efficiency of the hybrid algorithm is improved by tightening the proposed upper bound set. The numerical results obtained from different types of bi-objective instances show the effectiveness of the proposed approach.  相似文献   

19.
This paper considers a scheduling problem with two identical parallel machines. One has unlimited capacity; the other can only run for a fixed time. A given set of jobs must be scheduled on the two machines with the goal of minimizing the sum of their completion times. The paper proposes an optimal branch and bound algorithm which employs three powerful elements, including an algorithm for computing the upper bound, a lower bound algorithm, and a fathoming condition. The branch and bound algorithm was tested on problems of various sizes and parameters. The results show that the algorithm is quite efficient to solve all the test problems. In particular, the total computation time for the hardest problem is less than 0.1 second for a set of 100 problem instances. An important finding of the tests is that the upper bound algorithm can actually find optimal solutions to a quite large number of problems.  相似文献   

20.
The two-dimensional orthogonal non-guillotine cutting problem (NGCP) appears in many industries (like wood and steel industries) and consists in cutting a rectangular master surface into a number of rectangular pieces, each with a given size and value. The pieces must be cut with their edges always parallel or orthogonal to the edges of the master surface (orthogonal cuts). The objective is to maximize the total value of the pieces cut.In this paper, we propose a two-level approach for solving the NGCP, where, at the first level, we select the subset of pieces to be packed into the master surface without specifying the layout, while at a second level we check only if a feasible packing layout exists. This approach has been already proposed by Fekete and Schepers [S.P. Fekete, J. Schepers, A new exact algorithm for general orthogonal d-dimensional knapsack problems, ESA 97, Springer Lecture Notes in Computer Science 1284 (1997) 144–156; S.P. Fekete, J. Schepers, On more-dimensional packing III: Exact algorithms, Tech. Rep. 97.290, Universität zu Köln, Germany, 2000; S.P. Fekete, J. Schepers, J.C. van der Veen, An exact algorithm for higher-dimensional orthogonal packing, Tech. Rep. Under revision on Operations Research, Braunschweig University of Technology, Germany, 2004] and Caprara and Monaci [A. Caprara, M. Monaci, On the two-dimensional knapsack problem, Operations Research Letters 32 (2004) 2–14]. We propose improved reduction tests for the NGCP and a cutting-plane approach to be used in the first level of the tree search to compute effective upper bounds.Computational tests on problems derived from the literature show the effectiveness of the proposed approach, that is able to reduce the number of nodes generated at the first level of the tree search and the number of times the existence of a feasible packing layout is tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号