首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The desorption/ionization behaviour of polycyclic aromatic hydrocarbons (PAHs) in matrix-assisted laser desorption/ionization (MALDI) and laser desorption (LD) mass spectrometry was studied by the solvent-free sample preparation method. As the understanding of the desorption/ionization mechanism in MALDI is normally hampered by the different ionization and desorption efficiencies of the analytes, this work was focused on the analyses of a homologous series of four hexabenzocoronenes (HBCs) possessing virtually the same ionization efficiency: HBC parent, hexamethyl-hexabenzocoronene (HBC-C1), hexapropyl-hexabenzocoronene (HBC-C3) and hexakis(dodecyl)-hexabenzocoronene (HBC-C12). The different signal intensities obtained in their mass spectra can be related to differences in their desorption efficiencies, which are attributed to the different strengths of the intermolecular interactions between unsubstituted and alkylated HBCs in the solid state. The influence of the aromatic structure of PAHs on their photoionization/desorption probability was investigated. As a model system, an equimolar mixture composed of HBC-C12 and hexakis(dodecyl)-hexaphenylbenzene (HPB-C12) was chosen. The aromatic structures of both molecules and thus their absorption coefficients at the laser wavelength differ substantially and have a huge influence on their photoionization efficiency. The combined effect of laser light absorption and intermolecular interactions on the desorption/ionization behaviour of giant PAHs was further studied by using an equimolar mixture composed of a larger PAH (C(222)H(42)) and its dendritic precursor (C(222)H(150)). This mixture shows the opposite behaviour to that of the former example, because the balance between desorption and ionization efficiency has changed significantly. The present investigation should be of interest for providing a better understanding of MALDI and LD spectra obtained from natural PAH-containing samples, such as heavy oils, asphaltenes or pitches, for which our artificial mixtures represent suitable model systems.  相似文献   

2.
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are widespread environmental pollutants that are generated by incomplete combustion and by atmospheric transformation of polycyclic aromatic hydrocarbons (PAHs). Many nitro-PAH compounds are potent genotoxins and some are direct acting mutagens. Detection of nitro-PAHs in aerosols is complicated by small sample sizes and nitro-PAH abundances that are 1–2 orders of magnitude less than analogous unsubstituted PAHs. Selective detection of several nitro-PAHs by using laser desorption ionization time-of-flight mass spectrometry in negative ion mode has been achieved. Desorption and ionization of nitro-PAHs were effected by using pulsed UV radiation at 266 and 213 ran. Intense molecular anions were observed in addition to fragments identified as CN? and NO 2 ? , which were characteristic indicators of the presence of nitro-PAHs. Selective detection of nitro-PAHs in negative ion mode was demonstrated in the analysis of a diesel particulate sample.  相似文献   

3.
The partial contribution of polycyclic aromatic hydrocarbons (PAH), capable of being detected by gas chromatography (GC-PAH), both to the total mass of the extractable organic fraction of flame-formed carbon particulates and to its UV-visible absorption and fluorescence spectra, has been determined by previous work. This contribution indicates the presence of PAH of molecular weight (MW) greater than 400 Da not accessible to conventional analysis. The detection of species in this higher MW range is important for both their potential toxicology and their possible role in soot formation. In the present work extracts of soots have been analyzed by linear mode laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF-MS) to extend the MW range that can be analyzed beyond the GC-PAH. The results have been compared with both analysis by reflector mode LDI-TOF-MS and the MW evaluation obtained by SEC analysis, as the shortcomings and advantages of both techniques appear to be complementary. Matching the results from the two techniques could give interesting insights in the molecular mass range between GC-PAH and the first soot particles (of mass > 2000 Da). Mass spectra in this molecular mass range have been obtained with a main ion sequence spacing of 24 Th and a minor ion sequence also with a spacing of 24 Th but off-set by 12 Th with respect to the main sequence. The two ion progressions have been interpreted by attributing the predominant peaks mainly to PAH with even-carbon numbers and the smaller ones to cyclopenta-fused ring PAH. These distributions indicate the occurrence of two competitive mechanisms in the growth of PAH and soot nucleation, i.e. the addition of acetylene (HACA mechanism) and the incorporation of pentagons by large polycyclic aromatic molecules into their aromatic bonding network.  相似文献   

4.
气质联用仪法测定奶粉中多环芳烃   总被引:4,自引:0,他引:4  
研究了奶粉中多环芳烃的气相色谱/质谱(GC/MS)测定方法. 样品经甲醇-KOH皂化后用甲苯提取, 提取液经微孔滤膜过滤后用气相色谱质谱仪测定其含量, 外标法定量. 结果16种PAHs的回收率范围为92.0%~106%;RSD为2.2%~4.7%. 方法能同时分离16种PAHs, 适合于奶粉中多环芳烃的分析测定.  相似文献   

5.
Four groups of isomeric polynuclear aromatic hydrocarbons (PAH) were examined by gas chromatography/mass spectrometry (GC/MS) using positive-ion chemical ionization and negative-ion chemical ionization with a variety of reagent gases in order to evaluate the utility of each; differentiation of isomers was the ultimate goal. Hydrogen positive-ion chemical ionization (PICI) yielded different spectra for all but one isomer pair while retaining sensitivity comparable to electron-impact mass spectrometry. Several experimental conditions in the negative-ion mode afforded distinctly different spectra for isomeric PAH, but often sensitivities were reduced. The thirteen model compounds divided approximately into three classes according to the types and extent of reactions of the molecular anion. Class 1 gave as good sensitivity as hydrogen PICI; class 2 gave isomer-dependent spectra, but reduced sensitivity; class 3 gave no isomer differentiation, but greatly enhanced sensitivity.  相似文献   

6.
7.
The development and characterization of a new instrument for solid sampling which couples IR laser desorption followed by UV laser photo-ionization and analysis using an ion trap mass spectrometer has been investigated. For calibration, a new type of solid sample preparation involving activated charcoal as the solid substrate was used. This solid sample provided a steady signal for several thousand laser shots, which allowed optimization of the experimental procedure. It was found that both the IR and UV intensity and the delay between them play an important role in both the magnitude and type of signals observed. A method of gas phase accumulation with multiple laser shots was examined. Finally, this technique was demonstrated to be effective in providing direct qualitative information for N.I.S.T. SRM 1944 river sediment sample with no sample pre-treatment.  相似文献   

8.
王欣欣  刘庆阳  刘艳菊  谷学新 《色谱》2010,28(9):849-853
建立了二级热脱附-气相色谱-质谱联用技术测定大气可吸入颗粒物PM10中16种多环芳烃的分析方法。对二级热脱附和色谱-质谱条件进行了优化。实验结果表明,方法的检出限为0.14~0.42 ng/m3,平均加标回收率为52.7%~97.9%,相对标准偏差(RSD)为8.0%~18.4%。与传统方法相比,该方法的样品前处理时间短、有机溶剂的使用量少,是对人体及环境友善的检测技术。该方法已应用于32份实际大气颗粒物样品的分析。  相似文献   

9.
10.
Infrared matrix-assisted laser desorption/ionization (IR-MALDI) of the polyaromatic hydrocarbons (PAHs) anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene was performed using a 10.6-microm CO2 laser and a liquid matrix. Sulfolane (tetrahydrothiophene 1,1-dioxide) was found to be an effective matrix for PAH ionization: mass spectra obtained with a sulfolane matrix contain an intense molecular ion peak; interference from PAH fragment and matrix peaks is negligible in all cases. The main limitation of the sulfolane matrix is sample evaporation after 3 to 5 min in vacuum. This sample lifetime can be increased to between 15 and 30 min using a 2:1 (v/v) mixture of sulfolane and glycerol, but the resulting spectra have greater matrix interference and decreased shot-to-shot signal stability.  相似文献   

11.
A multiresidue method was developed for the de termination of 16 polycyclic aromatic hydrocarbons (PAHs) in unifloral and multifloral honeys. The analytical procedure is based on the matrix solid-phase dispersion of honey on a mixture of Florisil and anhydrous sodium sulfate in small glass columns and extraction with hexane-ethyl acetate (90 + 10, v/v) with assisted sonication. The PAH residues are determined by gas chromatography with mass spectrometric detection using selected-ion monitoring. Average recoveries for all the PAHs studied were in the range of almost 80 to 101%, with relative standard deviations of 6 to 15%. The limits of detection ranged from 0.04 to 2.9 microg/kg. The simultaneous extraction and cleanup of samples makes this method simple and rapid, with low consumption of organic solvents  相似文献   

12.
Summary Using a two-step liquid chromatographic separation on normalphase cartridges, crude extracts of diesel particulate matter can be separated without time-consuming sample handling into special fractions which mainly contain slightly-polar oxygenated polycyclic aromatic hydrocarbons (oxy-PAH) and nitrated polycyclic aromatic hydrocarbons (nitro-PAH). Subsequent analysis was by fused-silica capillary gas chromatography on a SE54 column along with flame-ionisation (GC/FID) and positive-ion electron-impact mass spectrometric detection (GC/MS) respectively. A number of individual oxy-PAH belonging to four different chemical classes (ketones, quinones, anhydrides and aldehydes) and several individual nitro-PAH were characterized by their retention times and mass spectra. Presented at the 15th International Symposium on Chromatography, Nürnberg, October 1984  相似文献   

13.
Polycyclic aromatic hydrocarbons are known for their mutagenic and carcinogenic properties. They are mainly emitted into the atmosphere by anthropogenic, incomplete combustion sources. Their trends over the course of a day are of interest in air quality management. A new combination of methods has been developed for the qualitative monitoring of polycyclic aromatic hydrocarbons in ambient aerosols with high time and size resolution. This has been accomplished by combining sampling with a rotating drum impactor and the analysis two-step laser mass spectrometry (L2MS). A validation for this method was carried out. Essential features of these combined techniques are (i) continuous, automatic sampling and (ii) selective as well as sensitive analysis due to the low detection limits which can be achieved with the L2MS analysis instrument. Analysis of a field sample taken in downtown Zurich, Switzerland, underlines the usefulness of this combined method, for example for following diurnal cycles of polycyclic aromatic hydrocarbons.  相似文献   

14.
A novel simplified sample preparation method for quantitative analysis of polycyclic aromatic hydrocarbons (PAH) in water samples by gas chromatography/mass spectrometry (GC/MS) was proposed. The method requires just 1 mL of water and 1 mL of dichloromethane. The detection limits of PAH with the use of high resolution GC/MS are about 1 μg/Λ, while the limits of quantification—10 μg/L. These limits correspond to those for the standard 8270 method of the United States Environmental Protection Agency.  相似文献   

15.
Gas chromatography/mass spectrometry (GC/MS) with negative ion chemical ionization (NICI) detection was utilized for quantitative determination of nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in diesel particulate-related standard reference materials (SRMs). Prior to GC/MS analysis, isolation of the nitro-PAHs from the complex diesel particulate extract was accomplished using solid phase extraction (SPE) and normal-phase liquid chromatographic (LC) fractionation using an amino/cyano stationary phase. Concentrations of eight to ten mononitro-PAHs and three dinitropyrenes were determined in three diesel particulate-related SRMs: SRM 1650a Diesel Particulate Matter, SRM 1975 Diesel Particulate Extract, and SRM 2975 Diesel Particulate Matter (Industrial Forklift). The results from GC/MS NICI using two different columns (5% phenyl methylpolysiloxane and 50% phenyl methylpolysiloxane) were compared to each other and to results from two other laboratories for selected nitro-PAHs. 1-Nitropyrene was the most abundant nitro-PAHs in each of the diesel particulate SRMs (19.8+/-1.1 micro g g(-1) particle in SRM 1650a and 33.1+/-0.6 micro g g(-1) particle in SRM 2975). Three dinitropyrene isomers were measured in SRM 1975 at 0.5-1.4 micro g g(-1) extract and in SRM 2975 at 1-3 micro g g(-1) particle.  相似文献   

16.
17.
Combustion-related soot particles were sampled in situ from the stoker system of a 0.5 MW incineration pilot plant (feeding material was wood) at two different heights over the feed bed in the third air supply zone. The collected particles were re-aerosolized by a powder-dispersing unit and analyzed by a single-particle laser desorption/ionization (LDI) time-of-flight mass spectrometer (aerosol-time-of-flight mass spectrometry, ATOFMS). The ATOFMS instrument characterizes particles according to their aerodynamic size (laser velocimetry) and chemical composition (LDI mass spectrometry). Chemical species from the particles are laser desorbed/ionized by 266 nm Nd:YAG laser pulses. ATOFMS results on individual 'real world' particles in general give information on the bulk inorganic composition. Organic compounds, which are of much lower concentrations, commonly are not detectable. However, recent off-line laser microprobe mass spectrometric (LMMS) experiments on bulk soot aerosol samples have emphasized that organic compounds can be desorbed and ionized without fragmentation in LDI experiments from black carbonaceous matrices. This paper reports the successful transfer of the off-line results to on-line analysis of airborne soot particles by ATOFMS. The detection of polycyclic aromatic hydrocarbons from soot particles is addressed in detail. The results are interpreted in the context of the recent LMMS results. Furthermore, their relevance with respect to possible applications in on-line monitoring of combustion processes is discussed.  相似文献   

18.
This report focuses on the heterogeneous distribution of small molecules (e.g. metabolites) within dry deposits of suspensions and solutions of inorganic and organic compounds with implications for chemical analysis of small molecules by laser desorption/ionization (LDI) mass spectrometry (MS). Taking advantage of the imaging capabilities of a modern mass spectrometer, we have investigated the occurrence of “coffee rings” in matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) sample spots. It is seen that the “coffee-ring effect” in MALDI/SALDI samples can be both beneficial and disadvantageous. For example, formation of the coffee rings gives rise to heterogeneous distribution of analytes and matrices, thus compromising analytical performance and reproducibility of the mass spectrometric analysis. On the other hand, the coffee-ring effect can also be advantageous because it enables partial separation of analytes from some of the interfering molecules present in the sample. We report a “hidden coffee-ring effect” where under certain conditions the sample/matrix deposit appears relatively homogeneous when inspected by optical microscopy. Even in such cases, hidden coffee rings can still be found by implementing the MALDI-MS imaging technique. We have also found that to some extent, the coffee-ring effect can be suppressed during SALDI sample preparation.  相似文献   

19.
Taxanes are biologically active compounds that have been extensively used in pharmacology for their powerful anticancer properties. High specificity and low level sensitivity for analysis of these compounds have been obtained with reversed-phase high-pressure liquid chromatography/mass spectrometry (RP-HPLC/MS), but the number of applications of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for low molecular weight analytes is rapidly growing. A new MALDI-MS approach for the rapid screening of a variety of taxanes and a tandem mass spectrometric (MS/MS) analysis of the most important and diagnostic taxane fragmentation pathways are proposed. A solid-phase extraction method followed by preliminary quantification is also reported.  相似文献   

20.
Laser desorption/ionization combined with Fourier transform ion cylcotron resonance mass spectrometry (LD/FT/ICR/MS) is a proven technique for the analysis of nonvolatile materials. Unfortunately, LD tends to produce a large excess of neutral species compared to ions. Laser desorption followed by chemical ionization (LD/CI) by use of a reagent gas is a seIective and sensitive means of control in the analysis of nonvolatile compounds. In this article we demonstrate the technique of ammonia LD/CI by addition of a small amount of ammonium bromide (NH4Br) to an involatile sample, i.e., the ammonium salt is used in place of ammonia reagent gas. For various aromatic hydrocarbons, abundant (M + H)+ ions are produced as a result of CI A primary advantage of this method in FT/ICR/MS is that selective LD/CI experiments may be conducted at low pressure as in pulsed valve CI (but without the need for pulsed valve operation), thereby providing the potential for obtaining high-resolution FT/ICR mass spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号