首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
K ANNOU  R ANNOU 《Pramana》2012,78(1):121-126
Dust-acoustic solitary waves in unmagnetized dusty plasma whose constituents are inertial charged dust grains, Boltzmannian electrons and nonthermal ions have been investigated by taking into account finite dust temperature. The pseudopotential has been used to study solitary solution. The existence of solitary waves having negative potential is reported.  相似文献   

2.
This paper reports experiments on self-excited dust acoustic waves (DAWs) and its propagation characteristics in a magnetized rf discharge plasma. The DAWs are spontaneously excited in dusty plasma after adding more particles in the confining potential well and found to propagate in the direction of streaming ions. The spontaneous excitation of such low-frequency modes is possible due to the instabilities associated with streaming ions through the dust grain medium. The background E-field and neutral pressure determine the stability of excited DAWs. The characteristics of DAWs strongly depend on the strength of external magnetic field. The magnetic field of strength B < 0.05 T only modifies the characteristics of propagating waves in dusty plasma at moderate power and pressure, P = 3.5 W and p = 27 Pa, respectively. It is found that DAWs start to be damped with increasing the magnetic field beyond B > 0.05 T and get completely damped at higher magnetic field B ∼ 0.13 T. After lowering the power and pressure to 3 W and 23 Pa respectively, the excited DAWs in the absence of B are slightly unstable. In this case, the magnetic field only stabilizes and modifies the propagation characteristics of DAWs while the strength of B is increased up to 0.1 T or even higher. The modification of the sheath electric field where particles are confined in the presence of the external magnetic field is the main cause of the modification and damping of the DAWs in a magnetized rf discharge plasma.  相似文献   

3.
H. Alinejad 《Physics letters. A》2011,375(6):1005-1009
The properties of arbitrary amplitude dust-acoustic (DA) solitary waves (SWs) in a dusty plasma containing warm adiabatic dust fluid, isothermal electrons and ions following flat-topped velocity distribution is studied by the pseudo-potential approach. The effects of dust temperature and flat-trapped ions are found to significantly modify the basic features of DA-SWs as well modify the parametric regime for the existence of rarefactive solitary waves. The pseudo-potential for small amplitude limit is also analytically analyzed, and the numerical results are found to agree with analytical results.  相似文献   

4.
5.
段文山 《中国物理》2004,13(5):598-601
The effect of dust charging and the influence of its adiabatic variation on dust acoustic waves is investigated. By employing the reductive perturbation technique we derived a Zakharov-Kuznetsov (ZK) equation for small amplitude dust acoustic waves. We have analytically verified that there are only rarefactive solitary waves for this system. The instability region for one-dimensional solitary wave under transverse perturbations has also been obtained. The obliquely propagating solitary waves to the z-direction for the ZK equation are given in this paper as well.  相似文献   

6.
采用流体动力学方程组和尘埃充电方程组成的自洽模型系统,对量子尘埃等离子体中的尘埃声波波动性质进行了研究。通过线性理论分析方法得到系统的尘埃声波波动方程及其色散关系,并对色散关系进行了数值分析。研究表明:充电效应定性地修正了尘埃声波的色散特性,引起尘埃声波的耗散,其耗散强度主要与尘埃等离子体的参数有关。最后,分析了引起尘埃声波耗散的物理原因。  相似文献   

7.
薛具奎  郎和 《中国物理》2003,12(5):538-541
The effect of dust charge variation on the dust-acoustic solitary structures is investigated in a warm magnetized two-ion-temperature dusty plasma consisting of a negatively and variably charged extremely massive dust fluid and ions of two different temperatures. It is shown that the dust charge variation as well as the presence of a second component of ions would modify the properties of the dust-acoustic solitary structures and may exite both dust-acoustic solitary holes (soliton waves with a density dip) and positive solitons (soliton waves with a density hump).  相似文献   

8.
A study has been presented for the nonlinear features of ion-acoustic (IA) shock waves in a magnetorotating plasma consisting of warm viscous streaming ions along with kappa-distributed electrons having two different temperatures. In this regard, we have employed the reductive perturbation technique to derive the Zakharov-Kuznetsov-Burgers (ZKB) equation that governs the dynamics of IA shock waves. The solution obtained by the hyperbolic tangent method has been shown to depend on various plasma parameters such as spectral index (κc), density fraction (f), effective rotation frequency (Ωc), ion kinematic viscosity (ηo), and temperature ratio (σ). In the limiting case when dissipative coefficient D → 0 , we have also examined the solitary potential distributions, which are the solutions of Zakharov Kuznetsov (ZK) equation. It is found that both rarefactive and compressive structures exist for the system under consideration. The transition in the nature of such profiles is due to the enhancement in the density of cold electrons. The importance of present theoretical investigations has been carried out with regard to Saturn's magnetosphere, where two temperature superthermal electron populations have been observed by various satellite missions.  相似文献   

9.
基于流体力学方程和与时间相关的线性微扰理论,分析了尘埃等离子体环境中离子与尘埃粒子的相互作用对离子声波和尘埃声波的影响,结果表明两者间的相互作用使得离子声波变得稳定而使尘埃声波变得不稳定。  相似文献   

10.
陈建宏 《中国物理 B》2009,18(6):2121-2128
For two-dimensional unmagnetized dusty plasmas with many different dust grain species, a Kadomtsev--Petviashvili (KP) equation, a modified KP (mKP) equation and a coupled KP(cKP) equation for small, but finite amplitude dust-acoustic solitary waves are obtained for different physical conditions respectively. The influence of an arbitrary dust size distribution described by a polynomial expressed function on the properties of dust-acoustic solitary waves is investigated numerically. How dust size distribution affects the sign and the magnitude of nonlinear coefficient A(D) of KP (mKP) equation is also discussed in detail. It is noted that whether a compressive or a rarefactive solitary wave exists depends on the dust size distribution in some dusty plasmas.  相似文献   

11.
杨建荣  徐婷  毛杰键  刘萍  刘希忠 《中国物理 B》2017,26(1):15202-015202
In order to study the characteristics of dust acoustic waves in a uniform dense dusty magnetoplasma system, a nonlinear dynamical equation is deduced using the quantum hydrodynamic model to account for dust–neutral collisions. The linear dispersion relation indicates that the scale lengths of the system are revised by the quantum parameter, and that the wave motion decays gradually leading the system to a stable state eventually. The variations of the dispersion frequency with the dust concentration, collision frequency, and magnetic field strength are discussed. For the coherent nonlinear dust acoustic waves, new analytic solutions are obtained, and it is found that big shock waves and wide explosive waves may be easily produced in the background of high dusty density, strong magnetic field, and weak collision. The relevance of the obtained results is referred to dense dusty astrophysical circumstances.  相似文献   

12.
In this paper,a charged multi-walled carbon nanotube(MWCNT),which is surrounded by charged nanoparticles,is modeled as a cylindrical shell of electron-ion-dust plasma.By employing classical electrodynamics formulations and the linearized hydrodynamic model,the dispersion relation of the dust acoustic wave oscillations in the composed system is investigated.We obtain a new low-frequency electrostatic excitation in the MWCNT,i.e.dust acoustic wave oscillations.  相似文献   

13.
《Physics letters. A》2020,384(27):126660
The propagation of terahertz waves in a dust acoustic wave is investigated numerically. By assuming a sinus profile of the dust number density in the dust acoustic waves, the transmission properties are calculated using finite difference time domain method. It shows that the dust acoustic wave can function similarly as a Bragg filter to block the terahertz waves of a certain wavelength. The bandwidth of the filter depends on the density profile of the dust acoustic wave.  相似文献   

14.
The nonlinear propagation of small amplitude dust‐acoustic (DA) solitary waves in magnetized dusty plasma consisting of negatively charged mobile dust fluid, and Boltzmann‐distributed electrons and ions with two distinct temperatures following a q‐nonextensive distribution are investigated. In this article, a number of nonlinear equations, namely, the Korteweg–de‐Vries (K‐dV) equations, have been derived by employing the reductive perturbation technique that is valid for a small but finite amplitude limit. The effects of nonextensivity of ions with two distinct temperatures and dust concentration on the amplitude and width of DA solitary waves are investigated theoretically. It is observed that both the nonextensive and low‐temperatures ions significantly modify the basic properties and polarities of DA solitary waves. It is shown that both positive and negative potential DA solitons occur in this case. The implications of these results to some astrophysical environments and space plasmas (e.g., stellar polytropes, peculiar velocity distributions of galaxies, and collisionless thermal plasma), and laboratory dusty plasma systems are briefly mentioned.  相似文献   

15.
Growth of a radially symmetrical ripple, superimposed on a Gaussian laser beam in collisional unmagnetised plasma is investigated. From numerical computation, it is observed that self-focusing of main beam as well as ripple determine the growth dynamics of ripple with the distance of propagation. The effect of growing ripple on excitation of ion acoustic wave (IAW) has also been studied.  相似文献   

16.
A theory for dressed quantum ion acoustic waves (QIAWs), which includes higher-order corrections when QIAWs are investigated by the reductive perturbation method, is presented for unmagnetized plasmas containing positive and negative ions and weakly relativistic electron beams. The properties of the QIAWs are investigated using a quantum hydrodynamic model, from which a Korteweg–de Vries equation is derived using the reductive perturbation method. An equation including higher-order dispersion and nonlinearity corrections is also derived, and the physical parameter space is discussed for the importance of these corrections.  相似文献   

17.
段文山 《中国物理》2003,12(5):479-482
By considering both the dust temperature and the dust charge variation in dusty plasma with vortex-like ion distribution, we obtained a modified Korteweg-de Vries equation. It indicates that the effect of dust charge variation can cause the one-dimensional soliton amplitude to become larger, and the dust temperature can cause the soliton amplitude to become larger as well. Moreover, as the dust temperature increases, the soliton amplitude will increase.  相似文献   

18.
In this paper, the problem of large amplitude dust acoustic (DA) solitons has been addressed in a charge varying dusty plasma with ions following a Cairns-Gurevich distribution. Based on the orbit motion limited approach, the correct Cairns-Gurevich ion charging current is presented for the first time. The expression relating the variable dust charge to the plasma potential is given in terms of the Lambert function and we take advantage of this transcendental function to, carefully, analyse DA solitons in a charge varying dusty plasma with trapped nonthermal ions. Our results show that the spatial patterns of the variable charge solitary wave are significantly changed due to the presence of ion population modelled by the Cairns-Gurevich distribution. An addition of a small concentration of trapped nonthermal ions makes the solitary structure less spiky, grows the net negative charge residing on the dust grain surface, and contributes to the electron depletion. Finally, our investigation is extended to highlight the effect of the grain dust charge variation. We have shown that under certain conditions, the impact of dust charge fluctuation may furnish an alternate physical mechanism rasing anomalous dissipation, which becomes more strong and may predominate over the dispersion as the nonthermal character of ions following the Cairns-Gurevich distribution increases.  相似文献   

19.
In this Letter, we discuss the electron acoustic (EA) waves in plasmas, which consist of nonthermal hot electrons featuring the Tsallis distribution, and obtain the corresponding governing equation, that is, a nonlinear Schrödinger (NLS) equation. By means of Modulation Instability (MI) analysis of the EA waves, it is found that both electron acoustic solitary wave and rogue wave can exist in such plasmas. Basing on the Darboux transformation method, we derive the analytical expressions of nonlinear solutions of NLS equations, such as single/double solitary wave solutions and single/double rogue wave solutions. The existential regions and amplitude of solitary wave solutions and the rogue wave solutions are influenced by the nonextensive parameter q and nonthermal parameter α. Moreover, the interaction of solitary wave and how to postpone the excitation of rogue wave are also studied.  相似文献   

20.
Kinetic theory has been applied to study the damping characteristics of dust ion acoustic waves (DIAWs) in a dusty plasma comprising q‐non‐extensive distributed electrons and ions, while the dust particles are considered extensive following the Maxwellian velocity distribution function. It is found that the results of the three‐dimensional velocity distribution function are more accurate compared to the results of the one‐dimensional velocity distribution function. The numerical solution of the dispersion relation is carried out to study the effect of the non‐extensivity parameter q on the dispersion, the damping rate, and the range of the values of the normalized wavenumber ( k λD) for which the DIAWs are weakly damped. It is found that the change in the value of the electron non‐extensivity parameter qe has a minor effect on the dispersion, the damping rate, and the range of the values of the normalized wavenumber ( k λD) for which the DIAWs are weakly damped, while on the other hand, ion non‐extensivity parameter qi has a strong effect on these arguments. The effect of other parameters, such as the ratio of electron to ion number density and ratio of electron to ion temperature, on the damping characteristics of DIAWs is also highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号