首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The analysis of small interfering RNA (siRNA) is important for gene function studies and drug developments. We employed CE to study the separation of siRNA ladder marker, which were ten double‐stranded RNA (dsRNA) fragments ranged from 20 to 1000 bp, in solutions of hydroxyethylcellulose (HEC) polymer with different concentrations and molecular weights (Mws). Migration mechanism of dsRNA during CE was studied by the mobility and resolution length (RL) plots. We found that the RL depended on not only the concentration of HEC, but also the Mw of HEC. For instance, RL of small dsRNA fragment was more influenced by concentration of high Mw HEC than large dsRNA fragment and RL of large dsRNA fragment was more influenced by concentration of low Mw HEC than small dsRNA fragment. In addition, we found electrophoretic evidence that the structure of dsRNA was more compact than dsDNA with the same length. In practice, we succeeded to separate the glyceraldehyde 3‐phosphate dehydrogenase siRNA in the mixture of the siRNA ladder marker within 4 min.  相似文献   

2.
Song L  Liu T  Liang D  Fang D  Chu B 《Electrophoresis》2001,22(17):3688-3698
Mixtures of two polymers with totally different chemical structures, polyacrylamide and polyvinylpyrrolidone (PVP) have been successfully used for double-stranded DNA separation. By polymerization of acrylamide in a matrix of PVP solution, the incompatibility of these two polymers was suppressed. Laser light scattering (LLS) studies showed that highly entangled interpenetrating networks were formed in the solution. Further systematic investigation showed that double-stranded DNA separation was very good in these interpenetrating networks. With a concentration combination of as low as 2% w/v PVP (weight-average molecular mass Mr = 1 x 10(6) g/mol) + 1% w/v polyacrylamide (Mr = 4 x 10(5) g/mol), the 22 fragments in pBR322/HaeIII DNA, including the doublet of 123/124 bp, have been successfully separated within 6.5 min. Under the same separation conditions, similar resolution could only be achieved by using polyacrylamide (Mr = 4 x 10(5) g/mol) with concentrations higher than 6% w/v and could not be achieved by using only PVP (Mr = 1 x 10(6) g/mol) with a concentration as high as 15% w/v. It is noted that the interpenetrating network formed by 2% PVP and 1% polyacrylamide has a very low viscosity and can dynamically coat the inner wall of a fused-silica capillary. The separation reached an efficiency of more than 10(7) theoretical plate numbers/m and a reproducibility of less than 1% relative standard deviation of migration time in a total of seven runs. The interpenetrating network could stabilize polymer chain entanglements. Consequently, the separation speed was increased while retaining resolution.  相似文献   

3.
Todorov TI  Morris MD 《Electrophoresis》2002,23(7-8):1033-1044
We present a study of the separation of RNA, single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in semidilute linear hydroxyethylcellulose (HEC) solution. Our results strive to provide a better understanding of the mechanisms of nucleic acid migration during electrophoresis in polymer solutions under native and denaturing conditions. From a study of the dependence of mobility on chain length and applied electric field, we found that RNA and ssDNA show better separation and higher resolution over a larger range of sizes compared to dsDNA. In addition, RNA reptation without orientation extends to longer chain lengths in comparison to ssDNA, possibly as a result of different type of short-lived secondary structure formations. Such a comparative study between nucleic acid capillary electrophoresis helps to optimize RNA separation and provides better understanding of RNA migration mechanisms in semidilute polymer solutions under denaturing conditions.  相似文献   

4.
The impact of gold nanoparticles (GNPs) on the microchip electrophoretic separation of double-stranded (ds) DNA using poly(ethylene oxide) (PEO) is described. Coating of the 75-microm separation channel on a poly(methyl methacrylate) (PMMA) plate in sequence with poly(vinyl pyrrolidone), PEO, and 13-nm GNPs is effective to improve reproducibility and resolution. In this study, we have also found that adding 13-nm GNPs to 1.5% PEO is extremely important to achieve high resolution and reproducibility for DNA separation. In terms of the stability of the GNPs, 100 mM glycine-citrate buffer at pH 9.2 is a good buffer system for preparing 1.5% PEO. The separation of DNA markers V and VI ranging in size from 8 to 2176 base pairs has been demonstrated using the three-layer-coated PMMA microdevice filled with 1.5% PEO containing the GNPs. Using these conditions, the analysis of the polymerase chain reaction products of UGT1A7 was complete in 7 min, with the relative standard deviation values of the peak heights and migration times less than 2.3% and 2.0%, respectively. In conjunction with stepwise changes of the concentrations of ethidium bromide (0.5 and 5 microg/ml), this method allows improved resolution and sensitivity for DNA markers V and VI.  相似文献   

5.
Han F  Xue J  Lin B 《Talanta》1998,46(4):735-742
A new kind of sieving matrix is presented in this paper to allow satisfactory separation of DNA fragments in a relatively low viscous solution. When a certain amount of mannitol was added to cellulose solution not concentrated enough to separate PGEM-3Zf(+)/HaeIII standards well, a polymer solution with low viscosity but with very good separation effects was obtained. The separation result of this sieving buffer was comparable with those using highly concentrated cellulose solutions. The sieving ability of solutions with different cellulose concentrations and different amounts of mannitol has been investigated. It was proved that 0.5% was the minimum hydroxypropylmethylcellulose (HPMC) concentration that could be used to separate DNA fragments satisfactorily. HPMC solutions with a concentration of less than 0.5% could not separate the standard DNA fragments even in the presence of mannitol. It was found that 6% was the optimized mannitol concentration because either more or less mannitol will lead a decrease of resolution. The principle of the positive influence of mannitol has also been discussed.  相似文献   

6.
This study reports improved pulsed field capillary electrophoresis (PFCE) for separation of large DNA ladders. Important analytical conditions, including gel polymer concentration, ratio of forward to backward pulse duration, and separation potential, were investigated for their effects on the separation performance of DNA ranging in size from 0.1 to 10.0 kilo base pairs (kbp). Results show that DNA fragments from 0.1 to 8.0 kbp can be resolved with high resolution, simultaneously, in a short time. The ratio of forward to backward pulse duration affects the separation performance for DNA fragments greater than 1.5 kbp, and 3 or 4 is the optimum value of the ratio for separation of DNA up to 10 kbp. Furthermore, the separations that were obtained with 74–19,329 bp λ-DNA restriction fragments clearly demonstrate a dramatic improvement in the separation time and resolution over the conventionally used square-wave PFCE. The inversion field capillary electrophoresis reported here may help enable future DNA analysis studies to be performed quickly and effectively.  相似文献   

7.
N-Methylformamide (NMF)-based matrices for capillary electrophoretic separation of nucleic acids have been developed. The use of an organic solvent as liquid base for the separation matrices allowed a hydrophobic polymer, C16-derivatized 2-hydroxyethyl cellulose (HEC), to be employed as structural element in the sieving medium. With a matrix consisting of 5% w/v of this polymer dissolved in NMF containing 50 mM ammonium acetate, p(dA)12-18 and p(dA)40-60 oligonucleotides were baseline separated. The addition of ammonium acetate to the buffer and separation matrix resulted in enhanced separation efficiency. Furthermore, it was possible to tailor the sieving performance of the separation medium by the use of a binary mixture of C16-derivatized HEC and PVP. Differences in sieving behavior of the various matrices evaluated are discussed.  相似文献   

8.
An optimization strategy for ternary solvent-strength gradient elution RP chromatography is described in which a two-dimensional model of gradient time (2 levels) against ternary proportions of organic modifiers (4 levels) was constructed. From the resolution surface the optimum ratio of organic modifiers could be selected. Excellent retention time and acceptable peak width and resolution simulations were obtained. The separation could be further optimized from the same input data by using a standard one-dimensional model in order to optimize for gradient slope, duration and shape. Excellent retention time and acceptable peak width and resolution simulations were obtained (< 1, 2 and 6% error, respectively).  相似文献   

9.
Wang Y  Liang D  Hao J  Fang D  Chu B 《Electrophoresis》2002,23(10):1460-1466
A noncross-linked interpenetrating polymer network (IPN), consisting of poly(N,N-dimethylacrylamide) (PDMA) and polyvinylpyrrolidone (PVP, weight-average molecular weight M(w) = 1 x 10(6) g/mol) was synthesized by polymerizing N,N-dimethylacrylamide (DMA) monomers directly in PVP buffer solution and tested as a separation medium for double-stranded (ds)DNA analysis without further purification. Due to the incompatibility of PVP and PDMA, a simple solution mixture could incur a microphase separation and showed poor performance on dsDNA separation. However, a dramatic improvement was achieved by the formation of an IPN. We attributed the high sieving ability of IPN as due to an increase in the number of entanglements by the more extended polymer chains. Apparent viscosity studies showed that the IPN had a much higher viscosity than the simple mixture containing the same amount of PDMA and PVP. In 1 x Tris-borate-EDTA (TBE) buffer, the concentration ratio of PDMA and PVP had a great effect on the DNA separation. At optimal conditions, the 22 fragments in pBR322/HaeIII DNA were successfully separated within 15 min, with a resolution of better than 1.0 for 123/124 bp.  相似文献   

10.
The application of capillary electrophoresis (CE) for the analysis of natural and synthetic low-molecular-mass heparin fragments at low pH is described. It is demonstrated that under the applied conditions the separation is based on charge, charge distribution and molecular mass of the heparin molecules, yielding a high resolution. It is shown that the presence of sodium chloride in the sample solution has hardly any effect on the CE performance. However, the pH of the electrophoresis buffer is a critical parameter. The resolutions obtained with CE and high-performance anion-exchange chromatography (HPAEC) are compared for various heparin fragments and it is concluded that, at least for this type of molecule, CE forms an attractive alternative to HPAEC.  相似文献   

11.
Xu F  Baba Y 《Electrophoresis》2004,25(14):2332-2345
We give an overview of recent development of low-viscosity polymer solutions and entropic trapping networks for double-stranded DNA (dsDNA) separations by conventional capillary electrophoresis and microchip electrophoresis. Theoretical models for describing separation mechanisms, commonly used noncross-linked polymer solutions, thermoresponsive (viscosity-adjustable) polymer solutions, and novel entropic trapping networks are included. The thermoresponsive polymer solutions can be loaded at one temperature into microchannels at lower viscosities, and used in separation at another temperature at entanglement threshold concentrations and higher viscosities. The entropic-based separations use only arrays of regular obstacles acting as size-separations and do not need viscous polymer solutions. These progresses have potential in integration to automated capillary and microfluidic chip systems, enabling better reusability of separation microchannels, much shorter DNA separation times, and higher reproducibility due to less matrix degradation.  相似文献   

12.
The use of capillary electrophoresis (CE) for simultaneous qualitative and quantitative detection of paraquat (PQ) and diquat (DQ) in both serum and urine was investigated. The two herbicides were extracted from biological fluids with liquefied phenol. Serum required a deproteinization with chloroform and ammonium sulfate as pretreatment. The extracts were hydrodynamically injected and the complete separation was carried out in 10 min, using a capillary tube (75 microm i.d., 500 mm) of fused silica containing 50 mM phosphate buffer (pH 2.50) as the carrier. UV absorbance detection at 200 nm was performed by an on-column detector. The analytes were characterized by their respective migration times. Analytical recoveries were 52.6% for PQ and 62.6% for DQ in serum, and 71.4% and 59.3%, respectively, in urine. The linearity was studied up to 4 mg/L and the limits of detection (LODs) were better than 5 pg/mL in serum or urine. The CE method described was applied to the characterization of two lethal poisonings and results were related.  相似文献   

13.
L Song  D Fang  R K Kobos  S J Pace  B Chu 《Electrophoresis》1999,20(14):2847-2855
The separation of double-stranded DNA (dsDNA) fragments in polymethylmethacrylate (PMMA) capillary electrophoresis (CE) chips by using E99P69E99 as a separation medium has been demonstrated. The PMMA CE chips were simply manufactured by micromachining and adhesive tape sealing. To make the separation channel compatible with the separation medium, a dynamic nonionic surfactant coating procedure was developed, which made the plastic separation channel sufficiently hydrophilic to allow the separation medium to fill the channel by capillary action. Subsequent separation of DNA fragments was successful with a separation efficiency of the order of 10(4) theoretical plates over an effective separation distance of 1.5 cm. By using an applied electric field strength of 200 V/cm, the separation of low DNA mass ladder was completed within 5 min. The simple coating procedure, together with the self-assembled viscosity-adjustable separation medium, should be useful to meet some of the essential requirements for developing single-use disposable CE chips. Coating the channels with polymer blends of PMMA and the separation medium also showed promise.  相似文献   

14.
利用毛细管区带电泳对广东省水牛乳乳清蛋白成分进行了分离和定量分析研究.采用1.2%的十四水合硼酸钠电泳缓冲液,对水牛奶乳清蛋白的四种主要组分α-乳白蛋白(α-La)、β-乳球蛋白(β-Lg)、牛血清白蛋白(BSA)、免疫球蛋白(IgG)进行了很好的分离,其迁移时间和峰面积的RSD分别小于1.5%和0.5%,加标回收率范围91%~102%.建立了基于毛细管区带电泳的分析方法,对牛乳及其乳制品中的乳清蛋白进行了快速分离和定量分析.  相似文献   

15.
Okamoto Y  Kitagawa F  Otsuka K 《Electrophoresis》2006,27(5-6):1031-1040
Cationic polymer microparticles have received much attention especially in the field of biotechnology, such that their analysis and separation have become important. So far, the separation of cationic polymer particles with different size using CE has not been achieved and the cationic particles migrated as if they are negatively charged, probably due to electrostatic interaction between capillary wall and cationic polymer particles. In this paper, the separation of cationic polymer microparticles by CE was investigated in detail. The separation of cationic particles with different size was achieved in CE by taking into account the interaction between sample particles and the inner surface of capillaries. By employing a poly(vinyl alcohol)-coated capillary, a better size separation of amine-modified latex particles was obtained compared to a Polybrene-coated capillary. It was elucidated that the composition, concentration, and pH of the background solution were also important factors in the separation of colloidal particles to avoid the surface adsorption and the characteristic aggregation of polymer particles. Furthermore, the CE analysis was applied to the characterization of cationic protein-immobilized particles.  相似文献   

16.
A mathematical model of DNA separation by capillary electrophoresis in entangled polymer solution is presented. The mechanism is modeled as a DNA molecule moving through transient pores formed in polymer solutions and colliding with blobs of polymer molecules encountered during migration. By taking account of the average retardation time (t(c)) of DNA-blob collision and calculating the total collision number (N(c)), a quantitative mathematical equation was reported, leading to predictions for the DNA mobility as a function of the experimental conditions like the size of DNA, the polymer concentration and the electric field strength. For DNA fragments in frequent size range, the initial experimental data agree well with the model. The DNA shape function (f(E)) was suggested and then discussed by the experimental data. The relationship between f(E) and electric field strength E was empirically estimated. Then, the average retardation time t(c) was obtained as about (2 approximately 3)x10(-6)s in linear polyacrylamide (LPA) and hydroxyethylcellulose (HEC) solution.  相似文献   

17.
Capillary gel electrophoresis and capillary electrophoresis using entangled polymer solutions was investigated for their applicability for the separation of low-molecular-mass RNAs (transfer RNA and 5S ribosomal RNA), with a size range of 70–135 nucleotides, from bacteria. Cross-linked polyacrylamide gel-filled capillaries (3 and 5%) were used for capillary gel electrophoresis. Good resolution was obtained suing gel-filled capillaries only for small tRNAs with lengths to 79 nucleotides, larger tRNAs and 5S rRNA could not be resolved using this method. Buffers containing sieving additives were employed to improve separations of RNA by capillary electrophoresis using entangled polymer solutions. The use of linear sieving polymers in buffers resolved 5S rRNA and tRNAs, even when they possessed only different secondary structure or small differences in length (1–5 nucleotides).  相似文献   

18.
Chiou SH  Huang MF  Chang HT 《Electrophoresis》2004,25(14):2186-2192
The separation of DNA by capillary electrophoresis using poly(ethylene oxide) (PEO) containing gold nanoparticles (GNPs) is presented. The impacts of PEO, GNPs, ethidium bromide (EtBr), and pH on the separation of double-stranded DNA have been carefully explored. Using a capillary dynamically coated with 5.0% poly(vinylpyrrolidone) and filled with 0.2% PEO containing 0.3 x GNPs (the viscosity less than 15 cP), we have demonstrated the separation of DNA markers V and VI within 5 min at pH 8.0 and 9.0. In terms of resolution and reproducibility, GNPs have a greater impact on the separation of DNA at pH 9.0. Resolution improvements for large DNA fragments (> 300 base pairs, bp) are greater than those for small ones in the presence of GNPs. It is important to point out that reproducibility is excellent (relative standard deviations for the migration times less than 0.5%) and thus no further dynamic coating is required in at least 20 consecutive runs in the presence of GNPs. Using 0.2% PEO (pH 9.0) containing 0.3 x GNPs, the separation of DNA fragments ranging in size from 21 to 23,130 bp was accomplished in 7 min. The results presented in this study show the advantage of PEO containing GNPs for DNA separation, including rapidity, high resolving power, excellent reproducibility, and ease of filling capillaries.  相似文献   

19.
High-performance liquid chromatography was developed for further separation of double-stranded (ds) RNAs obtained by CF-11 cellulose chromatography from plants infected with satellite associated cucumber mosaic virus. Fractions separated by monolithic polymer column, especially applicable for nucleic acid analyses, were identified electrophoretically and confirmed with a polymerase chain reaction test. Once standardized, the method has revealed clear evidence of satellite presence without precipitation and electrophoresis. According to demonstrated sensitivity, its application in the preliminary diagnostics of field samples is also predictable. Principally, it can be used as a powerful preparative approach resulting in highly pure satellite dsRNA for further analyses.  相似文献   

20.
We report separations of RNA molecules (281-6583 nucleotides) by capillary electrophoresis in dilute and semidilute solutions of aqueous hydroxyethylcellulose (HEC) ether in varying buffers. RNA mobility and peak band widths are examined under both nondenaturing and also denaturing conditions. From studies of sieving polymer concentration and chain length, it is found that good separations can be obtained in semidilute solutions as well as in dilute solutions. The dependence of RNA mobility on its chain length is consistent with separation by a similar to transient entanglement mechanism in dilute solutions. In semidilute entangled solutions the separation proceeds by segmental motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号