首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
在密度泛函理论的框架下, 采用嵌入点电荷簇模型研究了O2在MgO(001)完整和缺陷表面上的吸附.用电荷自洽的方法确定了点电荷的值.计算结果表明, O2倾向吸附在低配位的角Mg2+端.并且发现, 当O2为平躺吸附时,键长有较大的拉伸,将有利于O2的解离.同时,分别计算了使用裸簇和嵌入表观±2.0 e点电荷簇模型时的吸附能,并与采用电荷自洽方法的计算值进行了比较.结果表明,电荷自洽方法更能有效反映簇周围的环境,得到的计算结果能够较好地与实验值吻合.最后,分别计算了不同吸附情况下O2的振动频率.  相似文献   

2.
在密度泛函理论框架下,采用嵌入点电荷簇模型研究了NO在MgO(001)完整和缺陷表面上的吸附。研究结果表明:具有氧缺陷结构表面的催化活性较高,有利于NO键的削弱;当另一个NO分子进攻已吸附的NO分子时,NO键将进一步削弱,直致断裂,并伴有N2O产生,这与UPS和MIES实验观察到的现象一致。Mulliken布居分析指出,底物电子向NO转移,并填充到NO的*反键轨道上,从而导致NO键的削弱,并形成NO-。这也是可能导致形成NO-的原因。研究还表明,具有镁缺陷的MgO(001)表面对NO的解离没有催化活性。  相似文献   

3.
基于密度泛函理论(DFT)计算研究了O3在完整和具有氧空位的CuO(111)表面吸附的吸附位、吸附结构、吸附能和电子转移情况,比较了O3在完整表面和具有氧空位的表面分解的路径和能垒,分析了氧空位和表面吸附氧的生成机理。结果表明,在完整CuO表面,O3分子通过化学吸附或物理吸附表面结合,吸附能最高为-1.22eV(构型bri(2))。O3在具有氧空位的CuO表面均为化学吸附,吸附能最高为-2.95eV(构型ovbri(3)),显著高于完整表面的吸附能。O3吸附后,Cu吸附位的电荷密度减小,O3中的O原子附近的电荷密度显著增强,电荷从CuO表面转移到O3,并形成Cu-O离子键。O3分解后形成了超氧物种,提高了表面的氧化活性。在完整表面,以构型bri(2)为起始构型的路径反应能垒最低,为0.52eV;O2*在完整表面的脱附所需要的最低能量为0.42eV,形成氧空位的O2*脱附能为2.06eV。在具有氧空位的表面,O3分解的反应能垒为0.30eV(构型ovbri(1))和0.12eV(构型ovbri(3)),均低于完整表面的反应能垒;分解形成的O2*的最低脱附能也低于完整表面,为0.27eV。可见,氧空位的形成提高了吸附能,降低了反应能垒,使O3分子更容易吸附在CuO表面,并加快了O3的催化分解。  相似文献   

4.
采用密度泛函理论中的广义梯度近似,计算了CO在α-U(001)表面的吸附、解离和扩散.结果表明:CO分子以CU3OU2构型化学吸附在α-U(001)表面,吸附能为1.78-1.99eV;吸附后表层U原子向上迁移,伴随着褶皱的产生;CO分子与表面U原子的相互作用主要是U原子的电子向CO分子最低空轨道2π*转移,以及CO2π*/5σ/1π-U6d轨道间杂化而生成新的化学键;CO解离吸附较分子吸附在能量上更为有利,h1(C)+h2(O)和h1(C)+h1(O)(h:空位)解离态吸附能分别为2.71和3.08eV;近邻三重穴位之间C、O原子的扩散能垒分别为0.57和0.14eV,预示O原子较C原子更易在U(001)表面扩散迁移.  相似文献   

5.
运用广义梯度密度泛函理论结合周期性平板模型方法研究了N2O在完整及负载Cu的四方相ZrO2(101)表面的吸附与解离.结果表明,N2O在完整ZrO2(101)表面的吸附均为物理吸附,Cu在其完整表面的次表层第一氧位为最稳定吸附位,且覆盖度为0.25ML时的吸附最为稳定,吸附能为155.8kJ/mol;N2O分子中O端弱物理吸附于Cu/ZrO2(101)表面,其N端及平行吸附方式得到的稳定吸附能分别为121.6和66.8kJ/mol.频率及电荷布居计算表明,吸附后对称和反对称伸缩振动频率均发生红移,电子由Cu负载底物表面转移给N2O分子.对N2O分子的解离考虑了N端垂直吸附和平行吸附两种解离反应过程,发现平行吸附过程的解离更易发生.  相似文献   

6.
采用密度泛函理论(DFT)中广义梯度近似(GGA)方法,对Pt原子与y-Al2O3(001)面的相互作用及迁移性能进行了研究.分析了各种可能吸附位及吸附构型的松弛和变形现象,吸附能和迁移能垒的计算结果表明:Pt团簇能够稳定吸附在该表面.Pt原子在表面O位的吸附能明显较高,这主要是由Pt向基底O原子转移了电子所致.电荷布居分析表明,Pt原子显电正性,Pt和Al原子之间存在排斥作用,导致与Al原子产生较弱相互作用.计算的平均吸附能大小依赖于Pt团簇的大小和形状,总体趋势是随着Pt原子数增多,吸附能降低.Pt原子在y-Al2O3(001)表面迁移过程所需克服的迁移能垒最高值为0.51 eV.随着吸附的Pt原子数增多,更倾向于形成Pt团簇.因此,Pt原子在y-Al2O,(001)表面的吸附演变不可能形成光滑、均匀平铺的吸附构型,而在一定条件下容易出现团聚.  相似文献   

7.
采用密度泛函理论中的B3LYP方法研究了石墨烯中的单空位缺陷对铂原子(Pt)催化解离O_2分子的影响.计算发现O_2分子首先通过[2+1]或[2+2]环加成作用吸附在以单空位缺陷石墨烯为载体的Pt上(Pt-SV),并以不同的路径进行解离,吸附能分别为-158.23和-152.45kJ/mol.由于石墨烯片上单空位缺陷的存在,O_2分子更容易吸附在单空位缺陷处的Pt上,并且O_2在Pt-SV上解离的能垒(130.25kJ/mol)也明显比在Pt-pristine上解离的能垒低(76.23kJ/mol).因此石墨烯上单空位缺陷的存在提高增加了Pt的催化能力.  相似文献   

8.
石墨烯中的Stone-wales缺陷对铂原子催化解离氧分子的影响   总被引:2,自引:2,他引:0  
采用密度泛函理论中的UB3LYP方法,研究了石墨烯中的Stone-wales缺陷对铂原子催化解离氧气分子的影响.通过计算发现,氧气分子在以Stone-wales缺陷石墨烯片为载体的铂上(Pt-SW)形成3种吸附结构,通过4条路径,最终生成两种产物.氧气分子最易通过[2+1]环加成作用,吸附在以Stone-wales缺陷石墨烯片为载体的Pt的表面上,吸附能(Eads)为-0.64eV.由于石墨烯片上的Stone-wales缺陷的存在,氧气分子在Pt-SW上解离的4条路径中最有利的解离路径中的决速步能垒都明显高于氧气在以完美石墨烯为载体的Pt(Pt/Graphene)上解离的能垒(1.51eV vs 1.35eV),相应吸收的热量也高于在Pt/Graphene上吸收的热量(0.79eVvs0.15eV).  相似文献   

9.
MgO缺陷和不规则表面吸附Cl2的电子结构研究   总被引:2,自引:0,他引:2  
采用从头算程序对MgO表面 3种不同配位位置吸附Cl2 的构型进行优化 ,并用扩展休克尔紧束缚 (EHT)晶体轨道方法对MgO的缺陷和不规则表面吸附Cl2的可能构型进行能带计算 ,讨论了吸附前后能带组成和成键性质的变化。研究表明 :MgO表面吸附Cl2 将更趋向于吸附在O原子上而非Mg原子上 ,而且在 3种配位中MgO表面三配位氧最有利于吸附Cl2 ;吸附时 ,电子从O原子转移到Cl2 分子的反键轨道 ,但是各种吸附构型的MgO表面对Cl2 的吸附作用均比较微弱 ,是典型的物理吸附。  相似文献   

10.
以氧化镧催化剂在甲烷氧化偶联(OCM)反应中的结构敏感性实验研究为基础, 采用周期性密度泛函理论(DFT)计算研究氧化镧(001), (110)和(100)3个晶面及OCM反应物分子甲烷和氧在其上的吸附、 活化和解离. 结果表明, 氧化镧(001), (110)和(100)3个晶面的表面能大小顺序为(110)>(100)>(001), 3个晶面的价带和导带间隙大小顺序为(110)<(100)<(001), 即(001)是3个晶面中最稳定的晶面, 而(110)则是最活泼的晶面. 甲烷分子在氧化镧(001), (110)和(100)晶面上的吸附很弱(0.03 eV), H—CH3解离吸附能分别为2.16, 0.68和0.90 eV, 解离反应的难易性与晶面的活性顺序一致; 而氧分子在氧化镧(001), (110)和(100)晶面上的分子吸附能分别为-0.04, -0.31和-0.12 eV, 解离吸附能分别为1.22, 0.53和1.52 eV, 即氧化镧晶面结构对氧分子吸附具有明显的影响, 其中, (001)晶面上吸附最弱, (110)晶面上吸附最强, 以致O—O在(110)晶面上可以较低能垒(0.53 eV)解离, 形成亲电的过氧物种. 由于氧分子在氧化镧表面的吸附较甲烷分子强, 因此, 氧化镧在OCM反应中结构敏感性应与氧分子的吸附和活化密切相关. 甲烷和氧分子在氧化镧表面上活化的本质源自于电子自表面流向甲烷和氧分子的反键轨道, 且表面结构的改变会导致不同强度的电子流动驱动.  相似文献   

11.
The adsorption and decomposition of NzO at regular and defect sites of MgO (001) surface have been studied using cluster models embedded in a large array of point charges (PCs) by DFT/B3LYP method. The results indicate that the MgO (001)surface with oxygen vacancies exhibits high catalytic reactivity toward N2O adsorptive-decomposition. It is different from the regular MgO surface or the surface with magnesium vacancies.Much elongation of O—N bond of N2O after adsorption at oxy-gen vacancy site with O end down shows that O—N bond has been broken with concurrent production of N2, leaving a regu-lar site instead of the original oxygen vacancy site (F center ).The MgO (001) surface with magnesium vacancies hardly ex-hibits catalytic reactivity. It can be concluded that N2O dissoci-ation likely occurs at oxygen vacancy sites of MgO (001) sur-face, which is consistent with the generally accepted viewpoint in the experiments. The potential energy surface (PES) reflects that the dissociation process of N2O does not virtually need to surmount a given energy barrier.  相似文献   

12.
Cu(4), Ag(4), and Au(4) species adsorbed on an MgO(001) surface that exhibits neutral (F(s)) and charged (F(s) (+)) oxygen vacancies have been studied using a density functional approach and advanced embedding models. The gas-phase rhombic-planar structure of the coinage metal tetramers is only moderately affected by adsorption. In the most stable surface configuration, the plane of the tetramers is oriented perpendicular to the MgO(001) surface; one metal atom is attached to an oxygen vacancy and another one is bound to a nearby surface oxygen anion. A very similar structural motif was recently found on defect-free MgO(001), where two O(2-) ions serve as adsorption sites. Following the trend of the interactions with the regular MgO(001) surface, Au(4) and Cu(4) bind substantially stronger to F(s) and F(s) (+) sites than Ag(4). This stronger adsorption interaction at oxygen vacancies, in particular at F(s), is partly due to a notable accumulation of electron density on the adsorbates. We also examined the propensity of small supported metal species to aggregate to adsorbed di-, tri- and tetramers. Furthermore, we demonstrated that core-level ionization potentials offer the possibility for detecting experimentally supported metal tetramers and characterizing them structurally with the help of calculated data.  相似文献   

13.
The adsorption of Cl(2) at a low-coordinated oxygen site (edge or corner site) and vacancy site (terrace, edge, corner F, F(+), or F(2+) center) has been studied by the density functional method, in conjunction with the embedded cluster models. First, we have studied the adsorption of Cl(2) at the edge and corner oxygen sites and the results show that Cl(2), energetically, is inclined to adsorb at the corner oxygen site. Moreover, similar to the most advantageous adsorption mode for Cl(2) on the MgO (001) perfect surface, the most favorable adsorption occurs when Cl(2) approaches the corner oxygen site along the normal direction. A small amount of electrons are transferred from the substrate to the antibonding orbital of the adsorbate, leading to the Cl-Cl bond strength weakened a little. Regarding Cl(2) adsorption at the oxygen vacancy site (F, F(+), or F(2+) center), both large adsorption energies and rather much elongation of the Cl-Cl bond length have been obtained, in particular at the corner oxygen vacancy site, with concurrently large amounts of electrons transferred from the substrate to the antibonding orbital of Cl(2). It suggests, at the oxygen vacancy site, that Cl(2) prefers to dissociate into Cl subspecies. And the potential energy surface indicates that the dissociation process of molecular Cl(2) to atomic Cl is virtually barrierless.  相似文献   

14.
1 INTRODUCTION The interfaces between metals and oxide play a vital role in many industrial applications: hetero- geneous catalysis, microelectronics, thermal barriers, corrosion protection, metal processing and so on[1]. In catalysis, the choice of metal and oxide support is critical in order to obtain a desired reactivity and selectivity[2]. This is due in part to the inherent reac- tivity of the two components. Also the size and shape of the metal particle, which depend on the choice…  相似文献   

15.
We present and discuss the results of ab initio DFT plane-wave supercell calculations of the atomic and molecular oxygen adsorption and diffusion on the LaMnO(3) (001) surface which serves as a model material for a cathode of solid oxide fuel cells. The dissociative adsorption of O(2) molecules from the gas phase is energetically favorable on surface Mn ions even on a defect-free surface. The surface migration energy for adsorbed O ions is found to be quite high, 2.0 eV. We predict that the adsorbed O atoms could penetrate the electrode first plane when much more mobile surface oxygen vacancies (migration energy of 0.69 eV) approach the O ions strongly bound to the surface Mn ions. The formation of the O vacancy near the O atom adsorbed atop surface Mn ion leads to an increase of the O-Mn binding energy by 0.74 eV whereas the drop of this adsorbed O atom into a vacancy possesses no energy barrier. Ab initio thermodynamics predicts that at typical SOFC operation temperatures (approximately 1200 K) the MnO(2) (001) surface with adsorbed O atoms is the most stable in a very wide range of oxygen gas pressures (above 10(-2) atm).  相似文献   

16.
Oxygen vacancies at the polar O terminated (0001) surface of ZnO are of particular interest, because they are discussed as active sites in the methanol synthesis. In general, the polar ZnO surfaces are stabilized by OH groups, therefore O vacancies can be generated by removing either O atoms or OH or H2O groups from the surface. These defects differ in the number of electrons in the vacancy and the number of OH groups in the neighborhood. In the present study, the electronic structure and the adsorption properties of four different types of oxygen vacancies have been investigated by means of embedded cluster calculations. We performed ab initio calculations on F+ like surface excitations for the different defect types and found that the transition energies are above the optical band-gap, while F+ centers in bulk ZnO show a characteristic optical excitation at 3.19 eV. Furthermore, we studied the adsorption of CO2 and CO at the different defect sites by DFT calculations. We found that CO2 dissociates at electron rich vacancies into CO and an O atom which remains in the vacancy. At the OH vacancy which contains an unpaired electron CO2 adsorbed in the form of CO2-, while it adsorbed as a linear neutral molecule at the H2O defect. CO adsorbed preferentially at the H2O defect and the OH defect, both with a binding energy of 0.3 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号