首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Pressure drop measurements in the laminar and turbulent regions for water flowing through an alternating curved circular tube (x=h sin 2πz/λ) are presented. Using the minimum radius of curvature of this curved tube in place of that of the toroidally curved one in calculating the Dean number (ND=Re(D/2R c )2, it is found that the resulting Dean number can help in characterizing this flow. Also, the ratio between the height and length of the tube waves which represents the degree of waveness affects significantly the pressure drop and the transition Dean number. The following correlations have been found:
  1. For laminar flow: $$F_w \left( {\frac{{2R_c }}{D}} \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} = F_s \left( {\frac{{2R_c }}{D}} \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + 0.03,\operatorname{Re}< 2000.$$
  2. For turbulent flow: $$F_w \left( {\frac{{2R_c }}{D}} \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} = F_s \left( {\frac{{2R_c }}{D}} \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + 0.005,2000< \operatorname{Re}< 15000.$$
  3. The transition Dean number: $$ND_{crit} = 5.012 \times 10^3 \left( {\frac{D}{{2R}}} \right)^{2.1} ,0.0111< {D \mathord{\left/ {\vphantom {D {2R_c }}} \right. \kern-\nulldelimiterspace} {2R_c }}< 0.71.$$
  相似文献   

3.
The convergent flow of viscoelastic fluids in conical nozzles has been examined. The experimentally determined streamlines agreed with those obtained from calculations with an approximation up to \(\dot V^2 \) Because of the elasticity of the fluid a rotationally symmetric eddy arises. It clings to the wall whereas the output flow proceeds in the middle. When $$\frac{\varrho }{{\eta _0 }}\left( {\frac{{\dot V^2 }}{{t_0 }}} \right)^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} > 40$$ > 40 another eddy can arise in front of the first one. This second eddy is situated in the middle and causes the output to proceed as a flow near the wall. The higher the afore-mentioned dimensionless value is, the higher is the inclination of the flow to instability.  相似文献   

4.
Ref. [1] discussed the existence of positive solutions of quasilinear two-point boundary problems: but it restricts O相似文献   

5.
We show that for a fractal soil the soil-water conductivity, K, is given by $$\frac{K}{{K_\varepsilon }} = (\Theta /\varepsilon )^{2D/3 + 2/(3 - D)}$$ where $K_\varepsilon$ is the saturated conductivity, θ the water content, ? its saturated value and D is the fractal dimension obtained from reinterpreting Millington and Quirk's equation for practical values of the porosity ?, as $$D = 2 + 3\frac{{\varepsilon ^{4/3} + (1 - \varepsilon )^{2/3} - 1}}{{2\varepsilon ^{4/3} \ln ,{\text{ }}\varepsilon ^{ - 1} + (1 - \varepsilon )^{2/3} \ln (1 - \varepsilon )^{ - 1} }}$$ .  相似文献   

6.
We consider the second Painlevé transcendent $$\frac{{d^2 y}}{{dx^2 }} = xy + 2y^3 .$$ It is known that if y(x)k Ai (x) as x → + ∞, where ?1<k<1 and Ai (x) denotes Airy's function, then $$y(x) \sim d|x|^{ - \tfrac{1}{4}} sin\{ \tfrac{2}{3}|x|^{\tfrac{3}{2}} - \tfrac{3}{4}d^2 1n|x| - c\} ,$$ where the constants d, c depend on k. This paper shows that $$d^2 = \pi ^{ - 1} 1n(1 - k^2 )$$ , which confirms a conjecture by Ablowitz & Segur.  相似文献   

7.
We are concerned with the regularity properties for all times of the equation $$\frac{{\partial U}}{{\partial t}}\left( {t,x} \right) = - \frac{{\partial ^2 }}{{\partial x^2 }}\left[ {U\left( {t,{\text{0}}} \right) - U\left( {t,x} \right)} \right]^2 - v\left( { - \frac{{\partial ^2 }}{{\partial x^2 }}} \right)^\alpha U\left( {t,x} \right)$$ which arises, with α=1, in the theory of turbulence. Here U(t,·) is of positive type and the dissipativity α is a non-negative real number. It is shown that for arbitrary ν≧0 and ?>0, there exists a global solution in \(L^\infty [0,\infty ;H^{\tfrac{3}{2} - \varepsilon } (\mathbb{R})]\) . If ν>0 and \(\alpha > \alpha _{cr} = \tfrac{1}{2}\) , smoothness of initial data persists indefinitely. If 0≦α<α cr, there exist positive constants ν1(α) and ν2(α), depending on the data, such that global regularity persists for ν>ν1(α), whereas, for 0≦ν<ν2(α), the second spatial derivative at the origin blows up after a finite time. It is conjectured that with a suitable choice of α cr, similar results hold for the Navier-Stokes equation.  相似文献   

8.
Remnant functions are defined, with \(\kappa = \sigma + \tau + \tfrac{1}{2}\) , by $$R_{\sigma \tau } (z) = [{{\Gamma (\sigma - [\kappa ])} \mathord{\left/ {\vphantom {{\Gamma (\sigma - [\kappa ])} {\Gamma (\sigma )}}} \right. \kern-\nulldelimiterspace} {\Gamma (\sigma )}}]\sum\limits_{r = 1}^\infty {r^{2\tau } \left[\kern-0.15em\left[ {(r^2 + z)^{\sigma - 1} } \right]\kern-0.15em\right]_\kappa }$$ where \(\left[\kern-0.15em\left[ \right]\kern-0.15em\right]_\kappa\) denotes subtraction of sufficiently many terms of the Taylor series in powers of z to yield a convergent sum; for integral σ a factor \([1 + ({z \mathord{\left/ {\vphantom {z {r^2 }}} \right. \kern-0em} {r^2 }})]\) may also enter. These functions arise in various contexts, in particular, in the calculation of uniform remainder terms for the approximation by integrals of sums with singular summands. Differential recurrence relations, Taylor expansions, and various integral representations are obtained. The full asymptotic expansions for ¦z¦→∞ with ¦arg z¦ <π are derived, and it is shown that for integral τ these converge exponentially fast.  相似文献   

9.
The present paper deals with the stability properties of numerical methods for Volterra integral equations with delay argument. We assess the numerical stability of numerical methods with respect to the following test equations (0.1a) $$y\left( t \right) = \psi \left( 0 \right) + \int_0^t {\left( {py\left( s \right) + q\left( {s - \tau } \right)} \right)ds (0 \leqslant t \leqslant X)}$$ (0.1b) $$y\left( t \right) = \psi \left( t \right) \left( {t \in [ - \tau ,0)} \right)$$ where τ is a positive constant, and P and q are complex valued. We investigate the stability properties of reducible quadrature methods and θ-methods in the case of the above test equations  相似文献   

10.
In this paper, we construct stationary classical solutions of the incompressible Euler equation approximating singular stationary solutions of this equation. This procedure is carried out by constructing solutions to the following elliptic problem $$\left\{\begin{array}{l@{\quad}l} -\varepsilon^2 \Delta u = \sum\limits_{i=1}^m \chi_{\Omega_i^{+}} \left(u - q - \frac{\kappa_i^{+}}{2\pi} {\rm ln} \frac{1}{\varepsilon}\right)_+^p\\ \quad - \sum_{j=1}^n \chi_{\Omega_j^{-}} \left(q - \frac{\kappa_j^{-}}{2\pi} {\rm \ln} \frac{1}{\varepsilon} - u\right)_+^p , \quad \quad x \in \Omega,\\ u = 0, \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad x \in \partial \Omega,\end{array}\right.$$ where p > 1, ${\Omega \subset \mathbb{R}^2}$ is a bounded domain, ${\Omega_i^{+}}$ and ${\Omega_j^{-}}$ are mutually disjoint subdomains of Ω and ${\chi_{\Omega_i^{+}} ({\rm resp}.\; \chi_{\Omega_j^{-}})}$ are characteristic functions of ${\Omega_i^{+}({\rm resp}. \;\Omega_j^{-}})$ , q is a harmonic function. We show that if Ω is a simply-connected smooth domain, then for any given C 1-stable critical point of Kirchhoff–Routh function ${\mathcal{W}\;(x_1^{+},\ldots, x_m^{+}, x_1^{-}, \ldots, x_n^{-})}$ with ${\kappa^{+}_i > 0\,(i = 1,\ldots, m)}$ and ${\kappa^{-}_j > 0\,(j = 1,\ldots,n)}$ , there is a stationary classical solution approximating stationary m + n points vortex solution of incompressible Euler equations with total vorticity ${\sum_{i=1}^m \kappa^{+}_i -\sum_{j=1}^n \kappa_j^{-}}$ . The case that n = 0 can be dealt with in the same way as well by taking each ${\Omega_j^{-}}$ as an empty set and set ${\chi_{\Omega_j^{-}} \equiv 0,\,\kappa^{-}_j=0}$ .  相似文献   

11.
The influence of the Prandtl number on heat transfer and pressure drop characteristics of artificially roughened test sections has been investigated experimentally in the Prandtl number range from 3 to 180. For integral roughenesses and fully roughened test sections the efficiency η=ε Nu /ε ζ can be described by the Prandtl number and the roughness parameter \(k_{\text{S}}^ + = Re{\text{(}}k_{\text{S}} /d_{\text{h}} )\sqrt \zeta /8\) . The relation between the efficiency η, the Prandtl numberPr and the roughness parameterk s + can be expressed by the following empirical relation: $$\eta = \log \frac{{Pr^{{\text{0,33}}} }}{{k_{\text{S}}^{ + {\text{ 0,243}}} }} - 0,32 \cdot 10^{ - 3} k_{\text{S}}^ + {\text{ log }}Pr + {\text{1,25}}{\text{.}}$$ With this relation for the heat transfer and friction characteristics of smooth and rough channels it is possible to calculate the increase of heat transfer for rough channels by means of pressure drop measurements which are necessary to determine the friction factor ζ and the equivalent sand roughness depth; provided that heat transfer and friction characteristics of the respective smooth channel are known.  相似文献   

12.
A model is given, which permits determination of the height of a zone of mixing between a gas and a vapor in a condenser. The resulting predictive equation is algebraically simple and contains a non-dimensional group, zi *, which should characterize a host of related problems: $$z_i^* = z_i \sqrt {\frac{{4U\Delta T_0 \tilde RT_0 }}{{pD_0 R\tilde h_{fg} }}} .$$ Data are presented which verify the mathematical model.  相似文献   

13.
We obtain theorems of Phragmén-Lindelöf type for the following classes of elliptic partial differential inequalities in an arbitrary unbounded domain \(\Omega \subseteq \mathbb{R}^n ,{\text{ }}n \geqq 2\) (A.1) $$\sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial x_i }}\left( {a_{ij} 9(x)\frac{{\partial u}}{{\partial xj}}} \right)} + \sum\limits_{i = 1}^n {b_i (x,{\text{ }}u,{\text{ }}\nabla u)\frac{\partial }{{\partial x_i }}} \geqq f(x,{\text{ }}u)$$ where a ij are elliptic in Ω and b i ε L(Ω) and where also a ij are uniformly elliptic and Holder continuous at infinity and b i = O(|x|+1) as x → ∞; (A.2) $${\text{(A}}{\text{.2) }}\sum\limits_{i,j = 1}^n {a_{ij} (x,{\text{ }}u,{\text{ }}\nabla u)\frac{{\partial ^2 u}}{{\partial x_i \partial x_j }}} + \sum\limits_{i = 1}^n {b_i (x,{\text{ }}u,{\text{ }}\nabla u)\frac{\partial }{{\partial x_i }}} \geqq f(x,{\text{ }}u)$$ where aijare uniformly elliptic in Ω and b iε L(Ω); and finally (A.3) $${\text{div(}}\nabla u^p \nabla u {\text{)}} \geqq f{\text{(}}u{\text{), }}p > - 1,$$ where the operator on the left is the so-called P-Laplacian. The function f is always supposed positive and continuous. Moreover u is assumed throughout to be in the natural weak Sobolev space corresponding to the particular inequality under consideration, namely u ε. W loc 1,2 (Ω) ∩L loc t8 (Ω) for (A.I), W loc 2,n(Ω) for (A.2), and W loc 1,p+2 (Ω) ∩ L loc t8 (Ω) for (A.3). As a consequence of our results we obtain both non-existence and Liouville theorems, as well as existence theorems for (A.1).  相似文献   

14.
Steady vortices for the three-dimensional Euler equation for inviscid incompressible flows and for the shallow water equation are constructed and shown to tend asymptotically to singular vortex filaments. The construction is based on a study of solutions to the semilinear elliptic problem $$ \left\{ \begin{aligned} -{\rm div} \left(\frac{\nabla u_{\varepsilon}}{b}\right) & = \frac{1}{\varepsilon^2} b f \left(u_{\varepsilon} - \log \tfrac{1}{\varepsilon} q \right) & & \text{ in } \; \Omega, \\u_\varepsilon & = 0 & & \text{ on } \; \partial \Omega, \end{aligned}\right.$$ for small values of ${\varepsilon > 0}$ .  相似文献   

15.
In this paper, we consider the Cauchy problem for a nonlinear parabolic system ${u^\epsilon_t - \Delta u^\epsilon + u^\epsilon \cdot \nabla u^\epsilon + \frac{1}{2}u^\epsilon\, {\rm div}\, u^\epsilon - \frac{1}{\epsilon}\nabla\, {\rm div}\, u^\epsilon = 0}$ in ${\mathbb {R}^3 \times (0,\infty)}$ with initial data in Lebesgue spaces ${L^2(\mathbb {R}^3)}$ or ${L^3(\mathbb {R}^3)}$ . We analyze the convergence of its solutions to a solution of the incompressible Navier?CStokes system as ${\epsilon \to 0}$ .  相似文献   

16.
The main goal of this work is to prove that every non-negative strong solution u(x, t) to the problem $$u_t + (-\Delta)^{\alpha/2}{u} = 0 \,\, {\rm for} (x, t) \in {\mathbb{R}^n} \times (0, T ), \, 0 < \alpha < 2,$$ can be written as $$u(x, t) = \int_{\mathbb{R}^n} P_t (x - y)u(y, 0) dy,$$ where $$P_t (x) = \frac{1}{t^{n/ \alpha}}P \left(\frac{x}{t^{1/ \alpha}}\right),$$ and $$P(x) := \int_{\mathbb{R}^n} e^{i x\cdot\xi-|\xi |^\alpha} d\xi.$$ This result shows uniqueness in the setting of non-negative solutions and extends some classical results for the heat equation by Widder in [15] to the nonlocal diffusion framework.  相似文献   

17.
We prove that the problem of solving $$u_t = (u^{m - 1} u_x )_x {\text{ for }} - 1< m \leqq 0$$ with initial conditionu(x, 0)=φ(x) and flux conditions at infinity \(\mathop {\lim }\limits_{x \to \infty } u^{m - 1} u_x = - f(t),\mathop {\lim }\limits_{x \to - \infty } u^{m - 1} u_x = g(t)\) , admits a unique solution \(u \in C^\infty \{ - \infty< x< \infty ,0< t< T\} \) for every φεL1(R), φ≧0, φ≡0 and every pair of nonnegative flux functionsf, g ε L loc [0, ∞) The maximal existence time is given by $$T = \sup \left\{ {t:\smallint \phi (x)dx > \int\limits_0^t {[f} (s) + g(s)]ds} \right\}$$ This mixed problem is ill posed for anym outside the above specified range.  相似文献   

18.
The linearized boundary-initial history value problem for simple fluids obeying the Coleman-Noll constitutive equation $$S + p\delta = 2\int\limits_0^\infty {m(s)(E(t - s} ) - E(t))ds$$ is considered. Here S is the stress tensor, δ the Kronecker delta, p the constitutively indeterminate mean normal stress, E the infinitesimal strain tensor, and m(s) a material function. The shear relaxation modulus G is defined as (i) $$G(s) = \int\limits_\infty ^s {m(\xi )d\xi .}$$ In this paper it is shown that if G satisfies the assumptions (i) $$G \in C^2 [0,\infty ),{\text{ }}G(s) \to 0{\text{ as }}s \to \infty,$$ (ii) $$( - 1)^k \frac{{d^k G(s)}}{{ds^k }} > 0,{\text{ }}k = 0,1,$$ (iii) $$G''(s) \geqq 0,$$ then the rest state of the fluid is stable in an appropriate “fading memory” norm. The additional assumption (iv) $$ - \int\limits_0^\infty {G'} (s)s^2 ds < \infty$$ yields asymptotic stability.  相似文献   

19.
We consider as in Parts I and II a family of linearly elastic shells of thickness 2?, all having the same middle surfaceS=?(?)?R 3, whereω?R 2 is a bounded and connected open set with a Lipschitz-continuous boundary, and? ∈ ?3 (?;R 3). The shells are clamped on a portion of their lateral face, whose middle line is?(γ 0), whereγ 0 is a portion of withlength γ 0>0. For all?>0, let $\zeta _i^\varepsilon$ denote the covariant components of the displacement $u_i^\varepsilon g^{i,\varepsilon }$ of the points of the shell, obtained by solving the three-dimensional problem; let $\zeta _i^\varepsilon$ denote the covariant components of the displacement $\zeta _i^\varepsilon$ a i of the points of the middle surfaceS, obtained by solving the two-dimensional model ofW.T. Koiter, which consists in finding $$\zeta ^\varepsilon = \left( {\zeta _i^\varepsilon } \right) \in V_K (\omega ) = \left\{ {\eta = (\eta _\iota ) \in {\rm H}^1 (\omega ) \times H^1 (\omega ) \times H^2 (\omega ); \eta _i = \partial _v \eta _3 = 0 on \gamma _0 } \right\}$$ such that $$\begin{gathered} \varepsilon \mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \gamma _{\sigma \tau } (\zeta ^\varepsilon )\gamma _{\alpha \beta } (\eta )\sqrt a dy + \frac{{\varepsilon ^3 }}{3} \mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \rho _{\sigma \tau } (\zeta ^\varepsilon )\rho _{\alpha \beta } (\eta )\sqrt a dy \hfill \\ = \mathop \smallint \limits_\omega p^{i,\varepsilon } \eta _i \sqrt a dy for all \eta = (\eta _i ) \in V_K (\omega ), \hfill \\ \end{gathered}$$ where $a^{\alpha \beta \sigma \tau }$ are the components of the two-dimensional elasticity tensor ofS, $\gamma _{\alpha \beta }$ (η) and $\rho _{\alpha \beta }$ (η) are the components of the linearized change of metric and change of curvature tensors ofS, and $p^{i,\varepsilon }$ are the components of the resultant of the applied forces. Under the same assumptions as in Part I, we show that the fields $\frac{1}{{2_\varepsilon }}\smallint _{ - \varepsilon }^\varepsilon u_i^\varepsilon g^{i,\varepsilon } dx_3^\varepsilon$ and $\zeta _i^\varepsilon$ a i , both defined on the surfaceS, have the same principal part as? → 0, inH 1 (ω) for the tangential components, and inL 2(ω) for the normal component; under the same assumptions as in Part II, we show that the same fields again have the same principal part as? → 0, inH 1 (ω) for all their components. For “membrane” and “flexural” shells, the two-dimensional model ofW.T. Koiter is therefore justified.  相似文献   

20.
Let A 1(x, D) and A 2(x, D) be differential operators of the first order acting on l-vector functions ${u= (u_1, \ldots, u_l)}$ in a bounded domain ${\Omega \subset \mathbb{R}^{n}}$ with the smooth boundary ${\partial\Omega}$ . We assume that the H 1-norm ${\|u\|_{H^{1}(\Omega)}}$ is equivalent to ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_1u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ and ${\sum_{i=1}^2\|A_iu\|_{L^2(\Omega)} + \|B_2u\|_{H^{\frac{1}{2}}(\partial\Omega)}}$ , where B i  = B i (x, ν) is the trace operator onto ${\partial\Omega}$ associated with A i (x, D) for i = 1, 2 which is determined by the Stokes integral formula (ν: unit outer normal to ${\partial\Omega}$ ). Furthermore, we impose on A 1 and A 2 a cancellation property such as ${A_1A_2^{\prime}=0}$ and ${A_2A_1^{\prime}=0}$ , where ${A^{\prime}_i}$ is the formal adjoint differential operator of A i (i = 1, 2). Suppose that ${\{u_m\}_{m=1}^{\infty}}$ and ${\{v_m\}_{m=1}^{\infty}}$ converge to u and v weakly in ${L^2(\Omega)}$ , respectively. Assume also that ${\{A_{1}u_m\}_{m=1}^{\infty}}$ and ${\{A_{2}v_{m}\}_{m=1}^{\infty}}$ are bounded in ${L^{2}(\Omega)}$ . If either ${\{B_{1}u_m\}_{m=1}^{\infty}}$ or ${\{B_{2}v_m\}_{m=1}^{\infty}}$ is bounded in ${H^{\frac{1}{2}}(\partial\Omega)}$ , then it holds that ${\int_{\Omega}u_m\cdot v_m \,{\rm d}x \to \int_{\Omega}u\cdot v \,{\rm d}x}$ . We also discuss a corresponding result on compact Riemannian manifolds with boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号