首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Let p(G) and c(G) denote the number of vertices in a longest path and a longest cycle, respectively, of a finite, simple graph G. Define σ4(G)=min{d(x 1)+d(x 2)+ d(x 3)+d(x 4) | {x 1,…,x 4} is independent in G}. In this paper, the difference p(G)−c(G) is considered for 2-connected graphs G with σ4(G)≥|V(G)|+3. Among others, we show that p(G)−c(G)≤2 or every longest path in G is a dominating path. Received: August 28, 2000 Final version received: May 23, 2002  相似文献   

2.
Let D be a bipartite oriented graph in which the indegree and outdegree of each vertex are at least k. The result given in this paper is that D contains either a cycle of length at least 4k or a path of length at least 4k + 1. Jackson [1] declared that: if |V(D) |≤4k,D contains a Hamiltonian cycle. Evidently, the result Of this paper implies the result given by Jackson.  相似文献   

3.
图G中同构于K_(1,p)的子图叫G的p-爪(p≥3).如果G中任意一个p-爪中1度顶点之间边(在G中的边)的数目≥p-2,则称G为K(1,p-)-受限图,它是无爪图(p=3)时的推广.本文证明了:连通的K_(1,4-)受限图G,若|G|≥7,则G有Hamilton路或有长至少为2δ+2的路.  相似文献   

4.
本文证明了:n阶3—连通无爪图G中的最长圈的长至少为min{4k—5,n},这里k是G的最小度.  相似文献   

5.
Let G be a graph. We denote p(G) and c(G) the order of a longest path and the order of a longest cycle of G, respectively. Let κ(G) be the connectivity of G, and let σ 3(G) be the minimum degree sum of an independent set of three vertices in G. In this paper, we prove that if G is a 2-connected graph with p(G) ? c(G) ≥ 2, then either (i) c(G) ≥ σ 3(G) ? 3 or (ii) κ(G)?=?2 and p(G) ≥ σ 3(G) ? 1. This result implies several known results as corollaries and gives a new lower bound of the circumference.  相似文献   

6.
Some known results on claw-free graphs are generalized to the larger class of almost claw-free graphs. In this paper, we prove several properties on longest cycles in almost claw-free graphs. In particular, we show the following two results.? (1) Every 2-connected almost claw-free graph on n vertices contains a cycle of length at least min {n, 2δ+4} and the bound 2δ+ 4 is best possible, thereby fully generalizing a result of Matthews and Sumner.? (2) Every 3-connected almost claw-free graph on n vertices contains a cycle of length at least min {n, 4δ}, thereby fully generalizing a result of MingChu Li. Received: September 17, 1996 Revised: September 22, 1998  相似文献   

7.
8.
In this paper, we study triangle-free graphs. Let G=(V,E) be an arbitrary triangle-free graph with minimum degree at least two and σ4(G)?|V(G)|+2. We first show that either for any path P in G there exists a cycle C such that |VP?VC|?1, or G is isomorphic to exactly one exception. Using this result, we show that for any set S of at most δ vertices in G there is a cycle C such that SVC.  相似文献   

9.
A graph G is called quasi-claw-free if it satisfies the property:d(x,y)=2 there exists a vertex u∈N(x)∩N(y)such that N[u]■N[x]∪N[y].In this paper,we show that every 2-connected quasi-claw-free graph of order n with G■F contains a cycle of length at least min{3δ+2,n},where F is a family of graphs.  相似文献   

10.
本文证明了:任一阶数不超过6k—4的3-连通k-正则无爪图是Hamilton的.  相似文献   

11.
3-连通、高次和坚韧图周长的估计(I)   总被引:3,自引:0,他引:3  
设G是一个n阶3-连通图,周长为C(G),独立数为α,若G是1-坚韧的,且σ  相似文献   

12.
Removable Edges in Longest Cycles of 4-Connected Graphs   总被引:3,自引:0,他引:3  
Let G be a 4-connected graph. For an edge e of G, we do the following operations on G: first, delete the edge e from G, resulting the graph Ge; second, for all vertices x of degree 3 in Ge, delete x from Ge and then completely connect the 3 neighbors of x by a triangle. If multiple edges occur, we use single edges to replace them. The final resultant graph is denoted by Ge. If Ge is 4-connected, then e is called a removable edge of G. In this paper we obtain some results on removable edges in a longest cycle of a 4-connected graph G. We also show that for a 4-connected graph G of minimum degree at least 5 or girth at least 4, any edge of G is removable or contractible.Acknowledgment. The authors are greatly indebted to a referee for his valuable suggestions and comments, which are very helpful to improve the proof of our main result Lemma 3.3.Research supported by National Science Foundation of China AMS subject classification (2000): 05C40, 05C38, 05C75Final version received: March 10, 2004  相似文献   

13.
图中相互独立的4圈和含4个点的路   总被引:3,自引:0,他引:3       下载免费PDF全文
设k是一个正整数,G是一个顶点数为|G|=4k的图. 假设σ\-2(G)≥4k-1, 则G有一个支撑子图含k-1个4圈和一条顶点数为4的路,使得所有这些圈和路都是相互独立的. 设G=(V\-1,V \-2;E)是一个二分图使得|V\-1|=|V\-2|=2k. 如果对G中每一对满足x∈V\-1和y∈V\-2的不 相邻的顶点x和y 都有d(x)+d(y)≥2k+1, 则G包含k-1个相互独立的4圈和一条顶点数为4的路,使得所有这些圈和路都是相互独立的,并且此度条件是最好的.  相似文献   

14.
15.
For a graph G, let p(G) denote the order of a longest path in G and c(G) the order of a longest cycle in G, respectively. We show that if G is a 3‐connected graph of order n such that for every independent set {x1, x2, x3, x4}, then G satisfies c(G)p(G) ? 1. Using this result, we give several lower bounds to the circumference of a 3‐connected graph. © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 137–156, 2001  相似文献   

16.
令$K_{n}^{c}$表示$n$ 个顶点的边染色完全图.
令 $\Delta^{mon}
(K_{n}^{c})$表示$K^c_{n}$的顶点上关联的同种颜色的边的最大数目.
如果$K_{n}^{c}$中的一个圈(路)上相邻的边染不同颜色,则称它为正常染色的.
B. Bollob\'{a}s和P. Erd\"{o}s (1976) 提出了如下猜想:若 $\Delta^{{mon}}
(K_{n}^{c})<\lfloor \frac{n}{2} \rfloor$, 则$K_{n}^{c}$中含有一个正常染
色的Hamilton圈. 这个猜想至今还未被证明.我们研究了上述条件下的正常染色的路和圈.  相似文献   

17.
本文讨论了两顶点的度和与路可扩之间的关系,得到了如下结果:设G是n阶图,如果G中任意一对不相邻的顶点u,v满足d(u)+d(v)≥n+n/k(2≤k≤n-2),则G中任意一个满足k+1≤|P|相似文献   

18.
We verify two special cases of Thomassen’s conjecture of 1976 stating that every longest cycle in a 3-connected graph contains a chord.We prove that Thomassen’s conjecture is true for two classes of 3-connected graphs that have a bounded number of removable edges on or off a longest cycle. Here an edge e of a 3-connected graph G is said to be removable if Ge is still 3-connected or a subdivision of a 3-connected (multi)graph.We give examples to showthat these classes are not covered by previous results.  相似文献   

19.
Fouquet and Jolivet conjectured that a k-connected graph of order n and independence number α ≥ k has a cycle of length at least [Fouquet and Jolivet, Problèmes combinatoires et théorie des graphes Orsay (1976), Problems, page 438]. Here we prove this conjecture for k=3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号