首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cycloaliphatic polyolefins with functional groups were prepared by the Pd(II)-catalyzed addition polymerization of norbornene derivatives. Homo- and copolymers containing repeating units based on bicyclo[2.2.1] hept-5-en-2-ylmethyl decanoate (endo/exo-ratio = 80/20), bicyclo[2.2.1]hept-5-ene-2-carboxylic acid methyl ester (exo/endo = 80/20), bicyclo[2.2.1]hept-5-ene-2-methanol (endo/exo = 80/20), and bicyclo[2.2.1]hept-5-ene-2-carboxylic acid (100% endo) were prepared in 49–99% yields with {(η3-allyl)Pd(BF4)} and {(η3-allyl)Pd(SbF6)} as catalysts. The catalyst containing the hexafluoroantimonate ion was slightly more active than the tetrafluoroborate based Pd-complex.  相似文献   

2.
Epoxidation of (?)-(1R,2R,4R)-2-endo-cyano-7-oxabicyclo[2.2.1]hept-5-en-2-exo-yl acetate ((?)-5) followed by saponification afforded (+)-(1R,4R,5R,6R)-5,6-exo-epoxy-7-oxabicyclo[2.2.1]heptan-2-one ((+)-7). Reduction of (+)-7 with diisobutylaluminium hydride (DIBAH) gave (+)-1,3:2,5-dianhydroviburnitol ( = (+)-(1R,2R,3S,4R,6S)-4,7-dioxatricyclo[3.2.1.03,6]octan-2-ol; (+)-3). Hydride reductions of (±)-7 were less exo-face selective than reductions of bicyclo[2.2.1]heptan-2-one and its derivatives with NaBH4, AlH3, and LiAlH4 probably because of smaller steric hindrance to endo-face hydride attack when C(5) and C(6) of the bicyclo-[2.2.1]heptan-2-one are part of an exo oxirane ring.  相似文献   

3.
Seven [2.2.1] bridged alkenes were cleaved to the corresponding dialdehyde products by neutral heterogenous oxidation with KMnO4-CuSO4.5H2O. While endo, endo-dimethyl bicyclo[2.2.2]oct-5-ene-2,3-dicarboxylate, [2.2.2] bridged alkene, gave the corresponding α-hydroxy ketone, endo, endo-dimethyl bicyclo[3.2.2]non-8-ene-6,7-dicarboxylate afforded a diketone product.  相似文献   

4.
Reactions of p-nitrophenyloxirane with amines containing fragments with bicyclic skeleton of norbornene, norbornane, epoxynorbornane (stereoisomeric exo- and endo-5-aminomethylbicyclo[2.2.1]hept-2-enes, N-benzyl-endo-5-aminomethylbicyclo[2.2.1]hept-2-ene, endo-5-(2-aminoethyl)bicyclo[2.2.1]hept-2-ene, stereoisomeric exo- and endo-2-aminomethylbicyclo[2.2.1]heptanes, 2-(1-aminoethyl)bicyclo[2.2.1]heptane, exo-5-aminomethyl-exo-2,3-epoxybicyclo[2.2.1]heptane) were investigated. The aminolysis of p-nitrophenyloxirane occurred regioselectively according to Krasusky rule as was proved by 1H and 13C NMR data. As shown by 1H and 13C NMR spectroscopy the oxyalkylation product obtained from N-benzyl-endo-5-aminomethylbicyclo[2.2.1]hept-2-ene was composed of two diastereomers originating from the presence of a chiral nitrogen atom in the rear part of the rigid bicyclic skeleton. New products of amino groups transformation in the molecules of hydroxyamines were obtained by reaction with p-methylbenzoyl chloride and p-nitrophenylsulfonyl chloride. Regioselectivity of the attack of electrophilic reagents on the nitrogen in the hydroxyamines was confirmed by IR and 1H NMR spectra of the products. The data on pharmacological activity tests of N-2-hydroxyethyl(p-nitrophenyl)-5-aminomethylbicyclo[2.2.1]hept-2-ene are reported.  相似文献   

5.
In the presence of HSO3F/Ac2O in CH2CL2, 2-exo- and 2-endo-cyano-5,6-exo-epoxy-7-oxabicyclo[2.2.1]hept-2-yl acetates ( 6a , b ) gave products derived from the epoxide-ring opening and a 1,2-shift of the unsubstituted alkyl group (σ bond C(3)–C(4)). In contrast, under similar conditions, the 5,6-exo-epoxy-7-oxabicyclo[2.2.1]heptan-2-one ( 6c ) gave 5-oxo-2-oxabicyclo[2.2.1]heptane-3,7-diyl diacetates 20 and 21 arising from the 1,2-shift of the acyl group. Acid treatment of 5,6-exo-epoxy-2,2-dimethoxy-7-oxabicyclo[2.2.1]heptane ( 6d ) and of 5,6-exo-epoxy-2,2-bis(benzyloxy)-7-oxabicyclo[2.2.1]heptane ( 6e ) gave minor products arising from epoxide-ring opening and the 1,2-shift of σ bond C(3)–C(4) and major products ( 25 , 29 ) arising from the 1,3-shift of a methoxy and benzyloxy group, respectively. Under similar conditions, 5,6-exo-epoxy-2,2-ethylenedioxy-7-oxabicyclo[2.2.1]heptane ( 6f ) gave 1,1-(ethylenedioxy)-2-(2-furyl)ethyl acetate ( 32 , major) and a minor product 33 , arising from the 1,2-shift of σ bond C(3)–C(4). The following order of migratory aptitudes for 1,2-shifts toward electron-deficient centers has been established: acyl > alkyl > alkyl α-substituted with inductive electron-withdrawing groups. This order is valid for competitive Wagner-Meerwein rearrangements involving equilibria between carbocation intermediates with similar exothermicities.  相似文献   

6.
Fenchone (1,3,3-trimethylbicyclo[2.2.1]heptan-2-one) in reaction with acetonitrile in the presence of sulfuric acid (Ritter reaction) due to steric hindrances preventing geminal addition of two nucleophile molecules gives rise to a mixture of 1,2-exo-diacetamido-6-endo,7,7-trimethylbicyclo[2.2.1]heptane, 2-endo6-exo-diacetamido-3,3,6-trimethylbicyclo[2.2.1]heptane, and 2-exo,6-exo-diacetamido-1,3,3-tri- methylbicyclo[2.2.1]heptane in the ratio of 6:4:1. Fenchone oxime under condition of this reaction affords a mixture of stereoisomeric cis- and trans-acetamido-1-methyl-3-(-cyanoisopropyl)cyclopentanes in 2:3 ratio.  相似文献   

7.
1-R-Tricyclo[4.1.0.02,7]heptanes (R = H, Me, Ph) take up methane- and halomethanesulfonyl thiocyanates XCH2SO2SCN (X = H, Cl, Br) at the central C1–C7 bond in benzene at 20°C with high anti-selectivity to give bicyclo[3.1.1]heptane derivatives with the 7-endo-oriented sulfonyl group and the thiocyanato group in the geminal position with respect to the R substituent. The syn-adducts lose HSCN molecule by the action of potassium tert-butoxide in THF at 0°C or on heating in boiling aqueous dioxane containing NaOH with formation of 1-(X-methylsulfonyl)tricyclo[4.1.0.02,7]heptanes. Under analogous conditions the anti-adducts (X = Me) are converted into 1,2-bis(7-syn-methylsulfonyl-6-endo-R-bicyclo[3.1.1]hept-6-exo-yl)disulfanes. The anti-adduct derived from unsubstituted tricyclo[4.1.0.02,7]heptane and MeSO2SCN reacted with methyllithium or phenylmagnesium bromide to produce 7-anti-methyl(phenyl)sulfanyl-6-endo-methylsulfonylbicyclo-[3.1.1]heptanes which were also obtained by photochemical addition of MeSO2SMe(or Ph) to tricyclo-[4.1.0.02,7]heptane. Geometric parameters of radical intermediates in the sulfonylation of 1-R-tricyclo-[4.1.0.02,7]heptanes were optimized ab initio using 6-31G basis set.  相似文献   

8.
Reaction products of bicyclo[2.2.1]hept-2-ene-endo,endo-5,6-dicarboxylic (endic) acid with hydrazines and acylhydrazines were prepared. The features distinguishing of these reactions from those with amines were revealed. The compounds obtained were characterized by 1H, 13C NMR, and IR spectra. The assignment of the signals in NMR spectra was done with the use of quantum-chemical calculations of chemical shifts performed by the density functional method. The structure of one among compounds synthesized, N-(m-hydroxybenzoylamino)-bicyclo[2.2.1]hept-2-ene-endo,endo-5,6-dicarboxamide, was proved by X-ray diffraction analysis.  相似文献   

9.
The Diels-Alder adduct (±)- 3 of 2,4-dimethylfuran and 1-cyanovinyl acetate was converted stereoselectively into benzyl 6-(4-chlorophenylsulfonyl)-1,3-exo,5-trimethyl-7-oxabicyclo[2.2.1]hept-5-en-2-exo-yl ( 26 ) and -2-endo-yl ether ( 36 ). Addition of LiAlH4 to the latter led to the 3-O-benzyl derivatives 28 and 37 of (1RS,2SR,3SR,6SR)- and (1RS,2SR,3RS,6SR)-5-(4-chlorophenylsulfonyl)-2,4,6-trimethylcyclohex-4-ene-1,3-diol, respectively. Methylenation of 6-exo-(4-chlorophenylthio)-1-methyl-5-methylidene-7-oxabicyclo[2.2.1]heptan-2-one ( 16 ), obtained by reaction of (±)- 3 with 4-Cl-C6H4SCl and saponification gave, 6-exo-(4-chlorophenylthio)-1-methyl-3,5-dimethylidene-7-oxabicyclo [2.2.1]heptan-2-one ( 43 ), the reduction of which with K-Selectride afforded 6-exo-(4-chlorophenylthio)-1,3-endo-dimethyl-5-methylidene-7-oxabicyclo[2.2.1]heptan-2-endo-ol ( 44 ). The 3-O-benzyl derivative 48 of (1RS,2RS,3RS,6SR)-5-(4-chlorophenylsulfonyl)- 2,4,6-trimethylcyclohex-4-ene-1,3-diol was derived from 44 via based-induced oxa-ring opening of benzyl 6-endo-(4-chlorophenylsulfonyl)-1,3-endo-5-endo-trimethyl-7-oxabicyclo[2.2.1]hept-2-endo-yl ether ( 49 ). Benzylation of 28 , followed by reductive desulfonylation and oxidative cleavage of the cyclohexene moiety afforded (2RS,3SR,4RS,5RS)-3,5-bis(benzyloxy)-2,4-dimethyl-6-oxoheptanal ( 32 ).  相似文献   

10.
The mass spectrometric behaviour of pairs of stereoisomeric mono- and di-substituted norbornanes, namely bicyclo[2.2.1]heptane-2-endo- and -exo-carboxylic acid, methyl bicyclo[2.2.1]heptane-2-endo- and -exo-carboxylate, 2-exo-acetamidobicyclo[2.2.1]heptane-2-endo- and 2-endo-acetamidobicyclo[2.2.1]heptane-2-exo-carboxylic acid and methyl 2-exo-acetamidobicyclo[2.2.1]heptane-2-endo- and 2-endo-acetamido-bicyclo[2.2.1]heptane-2-exo-carboxylate was studied in detail with particular emphasis on characterization of the stereoisomers. The fragmentation patterns, studied with the aid of mass-analysed ion kinetic energy spectrometry, were supported by semi-empirical MO–SFC calculations, performed using the AM1 method included in the AMPAC program.  相似文献   

11.
3-exo-Hydroxymethyl-5,5,6-trimethylbicyclo[2.2.1]heptan-2-one was prepared by treatment of isocamphanone with Paraform in the presence of alkali in DMF. The product reacts with acetonitrile in the presence of sulfuric acid (Ritter reaction) to form a mixture of 2-(acetylamino)-3-(acetylaminomethyl)-5,5,6-trimethylbicyclo[2.2.1]hept-2-ene and 2,2-bis(acetylamino)-3-(acetylaminomethyl)-5,5,6-trimethylbicyclo[2.2.1]heptane in a 1:1 ratio. Attempted hydroxymethylation of isocamphanone in DMSO gave bis(isocamphanon-3-endo-yl)methane.  相似文献   

12.
The electrophilic additions of 2-nitrobenzenesulfenyl chloride to (1RS,2SR,4RS)-spiro[bicyclo[2.2.1]hept-5-ene-2,2′-oxirane] ( 12 ) and (1RS,2SR,4RS)-spiro[bicyclo[2.2.2]oct-5-ene-2,2′-oxirane] ( 14 ) were not regioselective under condition of kinetic control. However, good regioselectivity was observed for the addition of 2-nitro-benzenesulfenyl chloride to (1RS,2RS,4RS)-spiro[bicyclo[2.2.1]hept-5-ene-2,2′-oxirane] ( 13 ), giving (1RS,2SR,4SR,5RS,6RS)-6-exo-(2-nitrophenylthio)spiro[bicyclo[2.2.1]heptane-2.2′-oxirane]-5-endo-yl chloride ( 24 ) and for the exo addition to (1RS,2RS.4RS)-spiro[bicyclo[2.2.2]oct05-ene-2,2′-oxirane] ( 15 ), giving preferntially (1RS,2SR,4SR,5RS,6 RS)-6-exo-(2-nitrophenylthio) spiro[bicyxlo[2.2.2]octane-2,2′-oxirane]-5-endo-yl chloride ( 30 ). The facial selectivity (electrophilic exo vs. endo attack on the bucyclic alkene) depended on the relative configuration of the spiroepoxide ring in the bicyclo[2.2.2]octenes 14 and 15 . The exo-epoxide 14 was attacked preferentially (6:1) on the endo face by sulfenyl whereas exo attack was preferred (7:2) in the case of the endo-epoxide 15 . No products resulting from transannular ring expansion of the spiro-epoxide moieties could be detected.  相似文献   

13.
In CHCl3, CH3CN, or AcOH, benzeneselenenyl chloride (PhSeCl), bromide (PhSeBr), and acetate (PhSeOAc), 2-nitrobenzenesulfenyl chloride (NO2C6H4SCl), and 2,4-dinitrobenzenesulfenyl chloride ((NO2)2C6H3SCl) added to bicyclo[2.2.1]hept-5-en-2-one ( 5 ) in an. anti fashion with complete stereo- and regioselectivity, giving adducts 20–24 in which the chloride, bromide, or acetoxy substituent (X) occupies the endo position at C(6) and the Se- or S-substituent (E) the exo position at C(5), The addition 5 + (NO2)2C6H3SCl→ 24 was accompanied by the formation of (1RS, 2RS)-2-(2,4-dinitrophenylthio)cyclopent-3-ene-l-acetic acid ( 25 ). The latter was the major product in AcOH containing LiClO4. The additions of PhSeCl and PhSeBr to bicyclo[2.2.2]oct-5-en-2-one ( 6 ) were less stereoselective (proportion of exo vs. endo mode of electrophilic attack was ca. 3:1) but highly regioselective gazing adducts 27/28 and 29/30 , respectively, the regioselectivity being the same as that of the electrophilic additions of 5 . The reaction of PhSeCl with a 4:1 mixture of 2-exo-chloro- and 2-endo-chlorobicyclo[2.2.1]hept-5-ene-2-carbonitriles ( 12 ) was slower than addition 5 + PhSeCl; it gave adducts 31/32 (4:1) in which the PhSe moiety occupies the exo position at C(6) and the Cl atom the endo position at C(5). The addition of PhSeCl to 2-chlorobicyclo[2.2.1]oct-5-ene-2-carbonitriles ( 13 ) was very slow and gave adducts with the same regioselectivity as 12 + PhSeCl, but opposite with that of reactions of the corresponding enones 5 and 6 . PhSeX (X = Cl, Br, OAc) added to 2-cyanobicyclo[2.2.1]hept-5-en-2-yl acetates ( 14 ) with the same regioselectivity as 12 + PhSeCl. The additions of PhSeCl, PhSeBr, NO2C6H4SCl, and (NO2)2C6H3SCl to 2-(bicyclo[2.2.1]hept-5-en-2-ylidene)propanedinitrile ( 49 ) were not regioselective, showing that a dicyanomethylidene function is not like a carbonyl function when homoconjugated with a π system. The results are in agreement with predictions based on MO calculations suggesting that a carbonyl group homoconjugated with an electron-deficient centre can behave as an electron-donating, remote substituent because of favourable n(CO)?σC(1), C(2)?p(C(6) hyperconjugative interaction.  相似文献   

14.
Amino acid‐derived novel norbornene derivatives, N,N′‐(endo‐bicyclo[2.2.1] hept‐5‐en‐2,3‐diyldicarbonyl) bis‐L ‐alanine methyl ester (NBA), N,N′‐(endo‐bicyclo[2.2.1]hept‐5‐en‐2,3‐diyldicarbonyl) bis‐L ‐leucine methyl ester (NBL), N,N′‐(endo‐bicyclo[2.2.1]hept‐5‐en‐2,3‐diyldicarbonyl) bis‐L ‐phenylalanine methyl ester (NBF) were synthesized and polymerized using the Grubbs 2nd generation ruthenium (Ru) catalyst. Although NBA, NBL, and NBF did not undergo homopolymerization, they underwent copolymerization with norbornene (NB) to give the copolymers with Mn ranging from 5200 to 38,100. The maximum incorporation ratio of the amino acid‐based unit was 9%, and the cis contents of the main chain were 54–66%. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5337–5343, 2006  相似文献   

15.
Stereoselective syntheses of 2exo, 3exo-bis (chloromethyl)-5-[(Z)-chloromethylidene]- ( 9 ), 2exo, 3exo-bis (chloromethyl)5-[(E)-chloromethylidene]- ( 10 ) and 2exo, 3exo-bis(chloromethyl)-5-[(E)-methoxymethylidene]-6-niethylidene-7-oxa-bicyclo[2.2.1]heptane ( 13 ) are presented. Double elimination of HCI from 9, 10 and 13 yielded 2-[(Z)-chloromethylidene]- ( 14 ), 2-[(E)chloromethylidene]- ( 15 ) and 2-[(E)-methoxymethylidene]-3,5,6-mmethylidene-7-oxabicycio[2.2.1]heptane ( 18 ), respectively, without loss of the olefin configuration. Ethylene tetracarbonitrile (TCE) and N-phenyltriazolinedione (NPTAD) added to these new exocyclic dienes and tetraenes preferentially onto their exo-face. The same face selectivity was observed for the cycloadditions of TCE to the (Z)- and (E)-chlorodienes 9 and 10 , thus realizing a case where the kinetic stereoselectivity of the additions is proven not to be governed by the stability of the adducts. The exo-face selectivity of the Diels-Alder additions of dienes grafted onto 7-oxabicyclo [2,2.1]heptanes contrasts with the endo-face selectivity reported for a large number of cycloadditions of dienes grafted onto bicyclo[2.2.1]heptane skeletons.  相似文献   

16.
Further evidence is presented that the 2-norbornyl cation is stabilized primarily by C(2)–C(6) bridging, and that C(2)–C(7) bridging leads to prohibitive strain. Thus, a comparison of the heats of hydrogenation of nortricyclene 17 and bicyclo[3. 2. 0. 0.2,7]heptane 18 indicates that the strain energy of the latter is ca. 21.5 kcal/mol higher that that of 17 . Furthermore, 6-exo-2-oxabicyclo[2. 2. 1]heptyl sulfonates 8 ionize with strong O(2) participation to the bridged oxonium ion 12. In contrast, 2-endo-7-oxabicyclo[2.2.1]heptyl sulfonates 11 ionize without O(7) participation to form the unbridged carbenium ion 15 .  相似文献   

17.
By treating 1-octyne and phenylacetylene with butyllithium the corresponding lithium acetylides were obtained that with camphor and isocamphanone provided along streospecific process 2-exo-(1-octynyl or 2-phenyl-1-ethynyl)-2-endo-lithiumoxy-5,5,6-trimethylbicyclo[2.2.1]heptane and 2-endo-(1-octynyl or 2-phenyl-1-ethynyl)-2-exo-lithiumoxy-1,7,7-trimethylbicyclo[2.2.1]heptane. The hydrolysis of these lithium alcoholates occurred selectively and resulted in individual tertiary terpene alcohols containing exo-acetylene substituent in the case of camphor, endo-acetylene fragment in the case of isocamphanone. The alcohols reacted with methyl, ethyl, or butyl iodides in the presence of hexamethylphosphoramide to afford ethers, and with benzoyl chloride to furnish disubstituted esters of benzoic acid.  相似文献   

18.
In the presence of Me3Al, 1-cyanovinyl acetate added to 2,2′-ethylidenebis[3,5-dimethylfuran] ( 1 ) to give a 20:10:1:1 mixture of mono-adducts 4,5,6 , and 7 resulting from the same regiocontrol (‘para’ orienting effect of the 5-methyl substituent in 1 ). The additions of a second equiv. of dienophile to 4–7 were very slow reactions. The major mono-adducts 4 (solid) and 5 (liquid) have 2-exo-carbonitrile groups. The molecular structure of 4 (1RS,1′RS,2SR,4SR)-2-exo-cyano-4-[1-(3,5-dimethylfuran-2-yl)ethyl-7-oxabicyclo[2.2.1]hept-5-en-2-endo-yl acetate) was determined by X-ray single-crystal radiocrystallography. Mono-adducts 4 and 5 were saponified into the corresponding 7-oxanorbornenones 8 and 9 which were converted with high stereoselectivity into (1RS,1′SR,4RS,5RS,6RS)-4-[1-(3,5-dimethyl furan-2-yl)ethyl]-6-exo-methoxy-1,5-endo-dimethyl-7-oxabicyclo [2.2.1]heptan-2-one dimethyl acetal ( 12 ) and its (1′RS-stereoisomer 12a , respectively. Acetal hydrolysis of 12a followed by treatment with (t-Bu)Me2SiOSO2CF3 led to silylation and pinacol rearrangement with the formation of (1RS,1′RS,5RS,6RS)-4-[(tert-butyl)dimethy lsilyloxy]-1-(3,5-dimethylfuran-2-yl)ethyl]-5-methoxy-6-methyl-3-methylidene- 2-oxabicyclo[2.2.1]heptane ( 16 ). In the presence of Me3Al, dimethyl acetylenedicarboxylate added to 12 giving a major adduct 19 which was hydroborated and oxidized into (1RS,1′RS,2″RS,3″RS,4SR,4″RS,5 SR,6SR)-dimethyl 5-exo-hydroxy-4,6-endo-dimethyl-1-[1-(3-exo,5,5-trimeth oxy-2-endo,4-dimethyl-7-oxabicyclo[2.2.1]hept-2-yl)ethyl]-7-oxabicyclo [2.2.1]hept-2-ene-2,3-dicarboxylate ( 20 ). Acetylation of alcohol 20 followed by C?C bond cleavage afforded (1′RS,1″SR,2RS,2′″SR,3RS, 3″SR,4RS,4″SR,5RS)-dimethyl {3-acetoxy-2,3,4,5-tetrahydro-2,4-dimethyl-5-[1-(3-exo,5,5-trimethoxy ?2-endo,4-dimethyl-7-oxabicyclo[2.2.1]hept-1-yl)-ethyl]furan-2,5-diyl} bis[glyoxylate] ( 24 ).  相似文献   

19.
The synthesis of a PGH2 analog 5-endo(2(Z), 6-exo(1E)-3-diazo-5-(7-hydroxy-2-heptenyl)-6-(3-hydroxy-1-octenyl)bicyclo[2.2.1]heptan-2-one 2 is described.  相似文献   

20.
The 360-MHz-1H-NMR spectra of cyclohexa-1,4-dienes and cyclohexenes annellated to bicyclo[2.2.1]hept-2-enes and 7-oxabicyclo[2.2.1]hept-2-enes show inter-ring homoallylic coupling constants between the bridgehead protons of the bicyclo[2.2.1]heptenes and the exo-protons of the allylic methylene groups (0.8 ± 0.15 Hz for bicyclo[2.2.1]hept-2-enes; 0.8–1.4 Hz for 7-oxabicyclo[2.2.1]hept-2-enes). Contrastingly, the corresponding coupling between the bridgehead protons and the endo-protons is absent. The observed values are compared with those calculated by the INDO and CNDO/2 methods and discussed in the light of the bicyclo[2.2.1]hept-2-ene bond π-anisotropy. Vicinal as well as intra-ring homoallylic coupling constants are consistent with a small puckering of the cyclohexa-1,4-diene rings toward the endo-face. The allylic exo-methylene protons are more deshielded than the endo-protons independent of the nature of the substituents, the nature of the bridges, and the degree of unsaturation of the annellated systems. These results constitute a probe for the configuration of cyclohexa-1,4-dienes and cyclohexenes annellated to these bicyclic skeletons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号