首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A computational analysis of ordering in the higher homologous series of p-n-alkylbenzoic acids (nBAC) having 8(8BAC) carbon atoms in the alkyl chain was performed based on quantum mechanics and intermolecular forces. The atomic charge and dipole moment at each atomic centre were evaluated using the all-valence electron CNDO/2 method. The modified Rayleigh-Schrödinger perturbation theory and the multi-center-multipole expansion method were employed to evaluate long-range intermolecular interactions, while a 6-exp potential function was assumed for short-range interactions. The total interaction energy values obtained in these computations were used as input for calculating the probability of each configuration in a noninteracting and nonmesogenic solvent (i.e., benzene) at room temperature (300 K) using the Maxwell-Boltzmann formula. The molecular parameters of 8BAC, including the total energy, binding energy, and total dipole moment, were compared with those of 7BAC and 9BAC. The present article offers a theoretical support for the experimental findings.  相似文献   

2.
Computer simulations of molecular organization in a nematogen, alkenyl bicyclohexylnitrile (ALBCHNL), have been carried out with respect to translational and orientational motions. The atomic net charge and dipole moment at each atomic center has been evaluated using the complete neglect of differential overlap (CNDO/2) method. The modified Rayleigh-Schroedinger perturbation theory, along with multicentered-multipole expansion method, has been employed to evaluate long-range intermolecular interactions, while a “6-exp” potential function has been assumed for short-range interactions. The total interaction energy values obtained through these computations have been used as input to calculate the thermodynamical parameters such as entropy and Helmholtz free energy of each configuration at room temperature (300 K), nematic-isotropic transition (364.7 K) and above transition temperature (450 K). An attempt has been made to understand the molecular organization, to develop a new and interesting model for nematogen based on the thermodynamic parameters introduced in this article.  相似文献   

3.
The free energy and entropy of the dissociation of HCl molecule into ions in water vapor, HCl(H2O) n + mH2O → H3O + (H2O) n+m -1Cl?, were calculated. The dependences of various parameters on the interionic distance at 273 K and various vapor pressures were obtained. A detailed model taking into account unpaired covalent-type interactions, polarization interactions, charge transfer effect, and hydrogen bonds was applied. The numerical values of the parameters were reconstructed from the experimental data on the free energy and enthalpy of the first reactions of addition of vapor molecules to ions, and also from the results of quantum-chemical calculations of the energy and geometry of locally stable configurations of clusters HCl(H2O) n . Despite lower internal energy of the dissociated state, the molecular form is absolutely stable in clusters of water molecules. The dissociated state is relatively stable. Accumulation of unrecombined ion pairs in clusters is possible with a decrease in the temperature to 200 K.  相似文献   

4.
The heat capacity of a glassy third-generation poly(phenylene-pyridyl) dendron decorated with dodecyl groups is studied for the first time via high-precision adiabatic vacuum and differential scanning calorimetry in the temperature range of 6 to 520 K. The standard thermodynamic functions (molar heat capacity Cp°, enthalpy H°(T), entropy S°(T), and Gibbs energy G°(T)-H°(0)) in the range of T → 0 to 480 K, and the entropy of formation at 298.15 K, are calculated on the basis of the obtained data. The thermodynamic properties of the dendron and the corresponding third-generation poly(phenylene-pyridyl) dendrimer studied earlier are compared.  相似文献   

5.
The specific heat capacity of a magnetite-based magnetic fluid and changes in the magnetic part of the molar heat capacity of its magnetic phase in magnetic fields of 0–0.7 T were determined calorimetrically over the temperature range 288–353 K. The temperature dependence of changes in the magnetic part of entropy in an applied magnetic field was calculated. It was found that the field dependence of heat capacity had a maximum in fields of 0.3–0.4 T, and the temperature dependences of changes in the magnetic part of heat capacity ΔC p (H) and entropy ΔS m(H) had maxima at the magnetic phase transition temperature.  相似文献   

6.
The isolated polystyrene chains spin-labeled with peroxide radical at the free end (IPSOO) in which the chain roots were covalently bonded to the surface of microcrystalline cellulose (MCC) powder were produced by mechanochemical polymerization of styrene initiated by MCC mechanoradicals. The IPSOO was used as motional probes at the ends of isolated polystyrene chains tethered on the surface of MCC powder. Two modes for the molecular motion of IPSOO were observed. One was a tumbling motion of IPSOO on the MCC surface, defined as a train state, and another was a free rotational motion of IPSOO protruding out from the MCC surface, defined as a tail state. The temperature of tumbling motion (T tum ) of IPSOO at the train state was at 90 K with anisotropic correlation times. T tum (90 K) is extremely low compared to the glass transition temperature (T g b ; 373 K) of polystyrene in the bulk. At temperatures above 219 K, the IPSOO was protruded out from the MCC surface, and freely rotated at the tail state. The train–tail transition temperature (T traintail ) was estimated to be 222 K. T tum (90 K) and T traintail (222 K) are due to the extremely low chain segmental density of IPSOO on the MCC surface under vacuum. The interaction between IPSOO and the MCC surface is a minor contributing factor in the mobility of IPSOO on the surface under vacuum. It was found that peroxy radicals are useful probes to characterize the chain mobility reflecting their environmental conditions.  相似文献   

7.
The thermodynamic properties of amorphous polyphenylquinoxaline in the temperature range of 6 to 570 K are studied via precision adiabatic vacuum calorimetry and differential scanning calorimetry. The thermodynamic characteristics of glass transition are determined. Standard thermodynamic functions C°p, H°(T) ? H°(0), S°(Т) ? S°(0), and G°(T) ? H°(0) in the range of T → 0 to 570 K and the standard entropy of formation at T = 298.15 K are calculated. The low-temperature (T ≤ 50 K) heat capacity is analyzed using a multifractal model for the processing of heat capacity, fractal dimension D values are determined, and conclusions on the topological structure of the compound are drawn.  相似文献   

8.
Viscosities, η, and surface tensions, σ, of binary systems of phenetole (ethoxy benzene or ethyl phenyl ether) with N-methyl-2-pyrrolidone, N,N-dimethylformamide or with tetrahydrofuran were measured over the entire mole fraction range and at (298, 303 and 308) K. The experimental data was used to compute the deviations in viscosity, Δη, and surface tension, Δσ. Values of the excess Gibbs energy of activation G*E, surface entropy S σ and surface enthalpy H σ were calculated. Viscosity data of the binary systems were calculated using the Grunberg and Nissan and the three-body and four-body McAllister correlations. The Redlich–Kister method was used for evaluation of coefficients and standard deviations for Δη, Δσ and G*E. The results were interpreted in terms of the probable effect of molecular interactions between components as well as polarity.  相似文献   

9.
10.
Various thermo-acoustical parameters of 1,4-dioxane, tetrahydofuran and ethylacetae solutions of 1,1′-bis(4-isopropyloxyacetylphenoxy)cyclohexane were determined at different temperatures using density, viscosity and ultrasonic speed and correlated with concentration. Linear increase of ultrasonic speed, specific acoustical impedance, Rao’s molar sound function, Van der Waals constant and free volume with concentration C and decreased with temperature. Linear decrease of adiabatic compressibility, internal pressure, intermolecular free path length, classical absorption coefficient, and viscous relaxation time with concentration and increased with temperature indicated existence of strong molecular interactions in solutions and further supported by positive values of solvation number. Gibbs free energy of activation decreased with C in all three systems. It is decreased with T in 1,4-dioxane, while increased in tetrahydrofuran and ethyl acetate. Both enthalpy of activation and entropy of activation are increased gradually with C in 1,4-dioxane, while they are negative and remained practically independent of concentration in 1,4-dioxane and tetrahydofuran systems.  相似文献   

11.
The oxidation kinetics of crystal violet (a triphenylmethane dye) by potassium permanganate was focused in an acidic medium by the spectrophotometric method at 584 nm. The oxidation reaction of crystal violet by potassium permanganate is carried out in an acidic medium at different temperatures ranging within 298–318 K. The kinetic study was carried out to investigate the effect of the concentration, ionic strength and temperature. The reaction followed first order kinetics with respect to potassium permanganate and crystal violet and the overall rate of the reaction was found to be second order. Thermodynamic activation parameters like the activation energy (Ea), enthalpy change (ΔH*), free energy change (ΔG*), and entropy change (ΔS*) have also been evaluated.  相似文献   

12.
The temperature dependence of the heat capacity of a first-generation liquid crystal carbosilane dendrimer with methoxyphenyl benzoate end groups is studied for the first time in the region of 6–370 K by means of precision adiabatic vacuum calorimetry. Physical transformations are observed in this interval of temperatures, and their standard thermodynamic characteristics are determined and discussed. Standard thermodynamic functions Cp°(T), H°(T) ? H°(0), S°(T) ? S°(0), and G°(T) ? H°(0) are calculated from the obtained experimental data for the region of Т → 0 to 370 K. The standard entropy of formation of the dendrimer in the partially crystalline state at Т = 298.15 K is calculated, and the standard entropy of the hypothetic reaction of its synthesis at this temperature is estimated. The thermodynamic properties of the studied dendrimer are compared to those of second- and fourth-generation liquid crystal carbosilane dendrimers with the same end groups studied earlier.  相似文献   

13.
Orthovanadate ErVO4 has been prepared by solid-phase synthesis from a stoichiometric mixture of high pure V2O5 and chemically pure Er2O3 by multistage calcination in air in the temperature range 873–1273 K. The effect of temperature (380–1000 K) on the heat capacity of orthovanadate ErVO4 was studied by hightemperature calorimetry. Thermodynamic properties of erbium orthovanadate (enthalpy change H°(T)–H°(380 K), entropy change S°(T)–S°(380 K), and reduced Gibbs energy Φ°(T)) have been calculated from the experimental Cp = f(T) data. It has been shown that the specific heat varies in a row of oxides and orthovanadates of Gd-Lu naturally depending on the radius of the R3+ ion within the third and fourth tetrads.  相似文献   

14.
The effect structure and temperature have on the rate and free activation energy of reactions between trans-4,4'-dinitrostilbene oxide and Y-substituted arylsulfonic acids YC6H4SO3H in a mixture of dioxane with 1,2-dichloroethane (7: 3 vol/vol) at 265, 281, and 298 K is studied. It is found that as a result of the nonadditivity of the joint effect of substituents Y and temperature on the rate of the process of oxirane ring opening, the cross reaction series exhibits isoparametric properties in the aspect of enthalpy–entropy compensation. This allows the experimental determination of an isoparametric point with respect to the constant of substituent Y (σYIP= 0.52), in which activation entropy ΔS = 0 and free activation energy ΔG do not depend on temperature (ΔG = ΔH), and to conduct the transition through this point with inversion of the order of the effect temperature has on the value of ΔG as a result of reversing the sign of ΔS: in the series Y (σY) = 4-OCH3 (–0.27), 4-CH3 (–0.17), H (0), 4-Cl (0.23), and 3-NO2 (0.71), the values of ΔS (J/(mol K)) are–140,–119,–85,–42, and 44, respectively. The possibility of using isoparametric points as quantitative mechanistic criteria is demonstrated.  相似文献   

15.
Phase changes of Lennard-Jones clusters containing 4N 3 (N= 1?20) identical atoms in terms of solid and liquid phase-like forms have been studied by performing molecular dynamics (MD) simulation at sharply-bounded range of temperatures between freezing temperature (T f) and melting temperature (T m) and at constant pressure. The small differences between the free energies of clusters in different phase-like forms and also the non-rigidity of the cluster (0 ≤ γ ≤ 1) as an order-parameter, which characterizes the phase transition, have been calculated. Plots of the free energy of phase change versus the non-rigidity indicate that the free energy is a continuous function of the non-rigidity and also different crystalline-like cores with different free energies correspond to the same non-rigidity factor at any given temperature.  相似文献   

16.
Stannates Dy2Sn2O7 and Ho2Sn2O7 are produced by solid-phase synthesis from Dy2O3 (Ho2O3)–SnO2 stoichiometric mixtures by calcining at 1473 K. The molar heat capacity of holmium and dysprosium stannates is measured by differential scanning calorimetry (DSC) in the temperature range 370–1000 K. The experimental data are used to calculate thermodynamic properties (enthalpy change H°(T)–H°(370 K), entropy change S°(T)–S°(370 K), and the reduced Gibbs free energy Φ°(T)) of the synthesized compound.  相似文献   

17.
Relations for the apparent molar heat capacity ?c of urea in an aqueous solution depending on the molality m and temperature were obtained. A transition to the relations ?c(m,T) for D2O-(ND2)2CO and T2O-(NT2)2CO systems was effected by temperature scaling. At low temperatures, the isotherms of the molar heat capacity C p(m) of the protium and deuterium systems have minima shifted to more dilute solutions at elevated temperatures. At m = 1, C p of a solution does not depend on temperature in both systems. The dependences C p(T) also have minima at constant concentrations. The temperature of the minimum heat capacity is most effectively lowered by small additions of urea. For m = 0.25, T min is 7.5 K lower than T min of pure water, and its heat capacity is 0.08 J/(mol K) higher. A transition from m = 1.5 to m = 2 lowers the temperature of the minimum heat capacity by 3.6 K; thus, the heat capacity of solutions differs by 0.02 J/(mol K) only.  相似文献   

18.
Heat capacities of perfluoro-N-(4-methylcyclohexyl)piperidine (PMCP) have been measured by low-temperature adiabatic calorimetry. The purity of the compound, its triple-point temperature, and its enthalpy and entropy of fusion have been determined. The saturated vapor pressure was determined by comparative ebulliometry as a function of temperature in the 6.2–101.6 kPa pressure range and 374.2–460.9 K temperature range. The calorimetric enthalpy of vaporization at T = 298.15 K has been measured. The following thermodynamic properties were calculated for PMCP: normal boiling temperature, enthalpy of vaporization Δvap H m 0 (T) as a function of temperature, and critical parameters. The enthalpies of vaporization at 298.15 K obtained experimentally and by calculation methods match within their error limits, which validates their adequacy and the adequacy of the Δvap H m 0 = f(T) equation as an extrapolation.  相似文献   

19.
X-ray powder diffraction shows that a monoclinic WO2.90 film is formed during the thermal oxidation of 200-nm-thick magnetron-sputtered metallic tungsten on quartz substrates at T = 793 K. Temperature elevation to T = 840 K yields orthorhombic WO3 with preferred (001) orientation. Adsorption spectroscopy shows that these films have high transparency (~90%) in the wavelength range 450–900 nm, and interference is observed in the transparency range. Two types of transitions are discovered: indirect transitions with the energies E gi = 2.77 and 2.41 eV and direct transitions with the energies E gd = 5.49 and 4.82 eV for the oxide films formed at 793 and 840 K, respectively. The tendency toward the increase in the transition energy with increasing annealing temperature proves that the crystallinity and order of the film improve.  相似文献   

20.
Density (ρ), viscosity (η), and ultrasonic velocity (U) have been measured for binary mixtures of methyl formate with 1-butanol, 1-pentanol and 1-hexanol at 303 K. From the experimental results, adiabatic compressibility (β), acoustic impedance (Z), viscous relaxation time (τ), free length (Lf), free volume (Vf), internal pressure (πi), and Gibbs free energy (ΔG) have been determined. Excess values of various parameters have also been calculated and interoperated in terms of molecular interactions. The deviations in the parameters show that strength of intermolecular interactions between methyl formate with selected 1-alcohols have been observed in the order of 1-butanol < 1-pentanol < 1-hexanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号