首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 2 毫秒
1.
This paper introduces a novel intelligent control scheme for robust and precise positioning and orientation of a class of highly non-linear 3-RRR (revolute-revolute-revolute) planar parallel manipulator. The primary objective is to force the manipulator to track accurately a prescribed Cartesian trajectory when the system is subjected to different types of disturbances in the forms of forced harmonic excitations. A two level fuzzy tuning resolved acceleration control (FLRAC) is first designed and implemented to the system to demonstrate the stable response of the manipulator in performing trajectory tracking tasks in the absence of the disturbances. In this scheme, the first level of fuzzy tuning is used to acquire the proportional-derivative (PD) gains linearly while the second level considers non-linear tuning for determining the other parameters of the fuzzy controller to increase its performance. Then, the controller is added in series with an active force controller (AFC) to create a novel two degree-of-freedom (DOF) controller known as FLRAC-AFC which is subsequently and rigorously tested for system robustness and accuracy in tracking the prescribed trajectory. The simulation study provides further insight into the potentials of the proposed robotic system in rejecting the disturbances for the given operating conditions. The results clearly show that the FLRAC-AFC scheme provides a much superior trajectory tracking capability compared to the conventional linear RAC alone.  相似文献   

2.
This article presents an efficient parallel processing approach for solving the optimal control problem of nonlinear composite systems. In this approach, the original high-order coupled nonlinear two-point boundary value problem (TPBVP) derived from the Pontryagin's maximum principle is first transformed into a sequence of lower-order decoupled linear time-invariant TPBVPs. Then, an optimal control law which consists of both feedback and forward terms is achieved by using the modal series method for the derived sequence. The feedback term specified by local states of each subsystem is determined by solving a matrix Riccati differential equation. The forward term for each subsystem derived from its local information is an infinite sum of adjoint vectors. The convergence analysis and parallel processing capability of the proposed approach are also provided. To achieve an accurate feedforward-feedback suboptimal control, we apply a fast iterative algorithm with low computational effort. Finally, some comparative results are included to illustrate the effectiveness of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号