共查询到4条相似文献,搜索用时 2 毫秒
1.
《Stochastics An International Journal of Probability and Stochastic Processes》2013,85(3-4):125-145
Piecewise deterministic Markov processes (PDPs) are continuous time homogeneous Markov processes whose trajectories are solutions of ordinary differential equations with random jumps between the different integral curves. Both continuous deterministic motion and the random jumps of the processes are controlled in order to minimize the expected value of a performance criterion involving discounted running and boundary costs. Under fairly general assumptions, we will show that there exists an optimal control, that the value function is Lipschitz continuous and that a generalized Bellman-Hamilton-Jacobi (BHJ) equation involving the Clarke generalized gradient is a necessary and sufficient optimality condition for the problem. 相似文献
2.
Hana Baili Mohamad Assaad 《Mathematical and Computer Modelling of Dynamical Systems: Methods, Tools and Applications in Engineering and Related Sciences》2013,19(5):480-508
This paper addresses the problem of joint transmit power allocation and time slot scheduling in a wireless communication system with time varying traffic. The system is handled by a single base station transmitting over time varying channels. This may be the case in practice of a hybrid TDMA-CDMA (Time Division Multiple Access-Code Division Multiple Access) system. The operating time horizon is divided into time slots; a fixed amount of power is available at each time slot. The users share each time slot and the power available at this time slot with the objective of minimizing the expected total queue length. The problem is reformulated, via a heavy traffic approximation, as the optimal control of a reflected diffusion in the positive orthant. We establish a closed form solution for the obtained control problem. The main feature that makes it possible is an astute choice of some auxiliary weighting matrices in the cost rate. The proposed solution relies also on the knowledge of the covariance matrix of the non-standard multi-dimensional Wiener process which is the driving process in the reflected diffusion. We then compute this covariance matrix given the stationary distribution of the multi-dimensional channel process. Further stochastic analysis is provided: the cost variance, and the Fokker–Planck equation for the distribution density of the queue length. 相似文献
3.
Parabolic stochastic partial differential Equations (SPDEs) with multiplicative noise play a central rôle in nonlinear filtering. More precisely, the conditional distribution of a partially observed diffusion solves the normalized version of an equation of this type. We show that one can approximate the solution of the SPDE by the (unweighted) empirical measure of a finite system of interacting particle for the case when the diffusion evolves in a compact state space with reflecting boundary. This approximation differs from existing approximations where the particles are weighted and the particle interaction arises through the choice of the weights and not at the level of the particles' motion as it is the case in this work. The system of stochastic differential equations modelling the trajectories of the particles is approximated by the recursive projection scheme introduced by Pettersson [Stoch. Process. Appl. 59(2) (1995), pp. 295–308]. 相似文献
4.
The first passage time (FPT) problem is an important problem with a wide range of applications in science, engineering, economics, and industry. Mathematically, such a problem can be reduced to estimating the probability of a stochastic process first to reach a boundary level. In most important applications in the financial industry, the FPT problem does not have an analytical solution and the development of efficient numerical methods becomes the only practical avenue for its solution. Most of our examples in this contribution are centered around the evaluation of default correlations in credit risk analysis, where we are concerned with the joint defaults of several correlated firms, the task that is reducible to a FPT problem. This task represents a great challenge for jump‐diffusion processes (JDP). In this contribution, we develop further our previous fast Monte Carlo method in the case of multivariate (and correlated) JDP. This generalization allows us, among other things, to evaluate the default events of several correlated assets based on a set of empirical data. The developed technique is an efficient tool for a number of financial, economic, and business applications, such as credit analysis, barrier option pricing, macroeconomic dynamics, and the evaluation of risk, as well as for a number of other areas of applications in science and engineering, where the FPT problem arises. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献