首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A combined mixed finite element and discontinuous Galerkin method for a compressible miscible displacement problem which includes molecular diffusion and dispersion in porous media is investigated. That is to say, the mixed finite element method with Raviart-Thomas space is applied to the flow equation, and the transport one is solved by the symmetric interior penalty discontinuous Galerkin (SIPG) approximation. Based on projection interpolations and induction hypotheses, a superconvergence estimate is obtained. During the analysis, an extension of the Darcy velocity along the Gauss line is also used in the evaluation of the coefficients in the Galerkin procedure for the concentration.  相似文献   

2.
In this article we study a boundary control problem for an Oseen-type model of viscoelastic fluid flow. The existence of a unique optimal solution is proved and an optimality system is derived by the first-order necessary condition. We investigate finite element approximations to a solution of the optimality system, and a solution algorithm for the system based on the gradient method.  相似文献   

3.
A new characteristic mixed element scheme is formulated to solve numerically displacement problems of compressible fluids in porous media. A new mixed finite element method is introduced to solve the pressure equation of parabolic type, in which the mixed element system is symmetric positive definite and the pressure equation is separated from the flux equation. The modified method of characteristics is used to treat convection-dominated diffusion equations of the concentrations. The convergence with optimal accuracy is proved under the general condition. Project supported in part by China State Major Key Project for Basic Researches, Doctoral Station Foundation and TCTPF of China State Education Commission.  相似文献   

4.
An efficient time‐stepping procedure is investigated for a two‐dimensional compressible miscible displacement problem in porous media in which the mixed finite element method with Raviart‐Thomas space is applied to the flow equation, and the transport one is solved by the symmetric interior penalty discontinuous Galerkin approximation on Cartesian meshes. Based on the projection interpolations and the induction hypotheses, a superconvergence error estimate is obtained. During the analysis, an extension of the Darcy velocity along the Gauss line is also used in the evaluation of the coefficients in the Galerkin procedure for the concentration. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

5.
We discuss the design features and mathematical background of an explicit upwind finite-volume method to simulate non-stationary flow of a compressible, inviscid fluid. One of the design goals was the rigorous mathematical justification of each ingredient of the method. The method itself contains elements from finite-difference methods as well as finite-element methods and is formulated in a finite volume framework. The use of well-known algorithmic ingredients in a new framework results in a robust time-accurate scheme. To be able to easily handle complex geometries as well as adaption algorithms a tringale-based formulation was chosen. Numerical tests for two-dimensional flow are presented.  相似文献   

6.
A miscible displacement of one compressible fluid by another in a porous medium is governed by a nonlinear parabolic system. A new mixed finite element method, in which the mixed element system is symmetric positive definite and the flux equation is separated from pressure equation, is introduced to solve the pressure equation of parabolic type, and a standard Galerkin method is used to treat the convection‐diffusion equation of concentration of one of the fluids. The convergence of the approximate solution with an optimal accuracy in L2‐norm is proved. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 229–249, 2001  相似文献   

7.
We propose a stable finite element method for approximating the flow of a chemically reacting gas mixture in an MOCVD (metal‐organic chemical vapor deposition) reactor. The flow is governed by the full compressible Navier‐Stokes equations extended by transport equations for the chemical species, the energy equations and the equation of state, together with boundary conditions providing information on the reactor geometry and experimental conditions. The equations form a semilinear system with a constraint for which the corresponding pressure term is not the Lagrangian multiplier. An application of our method to a real world model of growth of GaAs shows the consistency with experimental data. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

8.
In this paper, we discuss the numerical simulation for a class of constrained optimal control problems governed by integral equations. The Galerkin method is used for the approximation of the problem. A priori error estimates and a superconvergence analysis for the approximation scheme are presented. Based on the results of the superconvergence analysis, a recovery type a posteriori error estimator is provided, which can be used for adaptive mesh refinement. The research project is supported by the National Basic Research Program under the Grant 2005CB321701 and the National Natural Science Foundation of China under the Grant 10771211.  相似文献   

9.
This article discusses a priori and a posteriori error estimates of discontinuous Galerkin finite element method for optimal control problem governed by the transport equation. We use variational discretization concept to discretize the control variable and discontinuous piecewise linear finite elements to approximate the state and costate variable. Based on the error estimates of discontinuous Galerkin finite element method for the transport equation, we get a priori and a posteriori error estimates for the transport equation optimal control problem. Finally, two numerical experiments are carried out to confirm the theoretical analysis.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1493–1512, 2017  相似文献   

10.
The fully developed electrically conducting micropolar fluid flow and heat transfer along a semi-infinite vertical porous moving plate is studied including the effect of viscous heating and in the presence of a magnetic field applied transversely to the direction of the flow. The Darcy-Brinkman-Forchheimer model which includes the effects of boundary and inertia forces is employed. The differential equations governing the problem have been transformed by a similarity transformation into a system of non-dimensional differential equations which are solved numerically by element free Galerkin method. Profiles for velocity, microrotation and temperature are presented for a wide range of plate velocity, viscosity ratio, Darcy number, Forchhimer number, magnetic field parameter, heat absorption parameter and the micropolar parameter. The skin friction and Nusselt numbers at the plates are also shown graphically. The present problem has significant applications in chemical engineering, materials processing, solar porous wafer absorber systems and metallurgy.  相似文献   

11.
We derive computable a posteriori error estimates for the lowest order nonconforming Crouzeix-Raviart element applied to the approximation of incompressible Stokes flow. The estimator provides an explicit upper bound that is free of any unknown constants, provided that a reasonable lower bound for the inf-sup constant of the underlying problem is available. In addition, it is shown that the estimator provides an equivalent lower bound on the error up to a generic constant.

  相似文献   


12.
We consider the generalized Forchheimer flows for slightly compressible fluids. Using Muskat's and Ward's general form of Forchheimer equations, we describe the fluid dynamics by a nonlinear degenerate parabolic equation for the density. We study Galerkin finite elements method for the initial boundary value problem. The existence and uniqueness of the approximation are proved. A prior estimates for the solutions in , time derivative in and gradient in , with a∈(0,1) are established. Error estimates for the density variable are derived in several norms for both continuous and discrete time procedures. Numerical experiments using backward Euler scheme confirm the theoretical analysis regarding convergence rates. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
We analyze a combined method consisting of the mixed finite element method for pressure equation and the discontinuous Galerkin method for saturation equation for the coupled system of incompressible two‐phase flow in porous media. The existence and uniqueness of numerical solutions are established under proper conditions by using a constructive approach. Optimal error estimates in L2(H1) for saturation and in L(H(div)) for velocity are derived. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
We study a 2D model of the orientation distribution of fibres in a paper machine headbox. The goal is to control the orientation of fibres at the outlet by shape variations. The mathematical formulation leads to an optimization problem with control in coefficients of a linear convection-diffusion equation as the state problem. Existence of solutions both to the state and the optimization problem is analyzed and sensitivity analysis is performed. Further, discretization is done and a numerical example is shown. This research was supported by the Charles University Grant Agency under Contract 6/2005/R, MSM 0021620839 (MŠMT ČR), and the Academy of Finland, Grant #204741.  相似文献   

15.
In this article, we prove the convergence of a discrete duality finite volume scheme for a system of partial differential equations describing miscible displacement in porous media. This system is made of two coupled equations: an anisotropic diffusion equation on the pressure and a convection‐diffusion‐dispersion equation on the concentration. We first establish some a priori estimates satisfied by the sequences of approximate solutions. Then, it yields the compactness of these sequences. Passing to the limit in the numerical scheme, we finally obtain that the limit of the sequence of approximate solutions is a weak solution to the problem under study. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 723–760, 2015  相似文献   

16.
This article considers the time‐dependent optimal control problem of tracking the velocity for the viscous incompressible flows which is governed by a Ladyzhenskaya equations with distributed control. The existence of the optimal solution is shown and the first‐order optimality condition is established. The semidiscrete‐in‐time approximation of the optimal control problem is also given. The spatial discretization of the optimal control problem is accomplished by using a new stabilized finite element method which does not need a stabilization parameter or calculation of high order derivatives. Finally a gradient algorithm for the fully discrete optimal control problem is effectively proposed and implemented with some numerical examples. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 263–287, 2012  相似文献   

17.
The main objective of the current work is to introduce a new conceptual linearization strategy to improve the performance of a primitive shock‐capturing pressure‐based finite‐volume method. To avoid a spurious oscillatory solution in the chosen collocated grids, both the primitive and extended methods utilize two convecting and convected momentum expressions at each cell face. The expressions are obtained via a physical‐based discretization of two inclusive statements, which are constructed via a novel incorporation of the continuity and momentum governing equations. These two expressions in turn provide a strong coupling among the Euler conservative statements. Contrary to the primitive work, the linearization in the current work respects the definitions and essence of physics behind deriving the Euler governing equations. The accuracy and efficiency of the new formulation are then investigated by solving the shock tube as a problem with moving normal and expansion waves and the converging‐diverging nozzle as a problem with strong stationary normal shock. The results show that there is good improvement in performance of the primitive pressure‐based shock‐capturing method while its superior accuracy is not deteriorated at all. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

18.
This article is concerned with the equations governing the steady motion of a viscoelastic incompressible second‐order fluid in a bounded domain. A new proof of existence and uniqueness of strong solutions is given. In addition, using appropriate finite element methods to approximate a coupled equivalent problem, sharp error estimates are obtained using a fixed point argument. The method is applied to the two‐dimensional lid‐driven cavity problem, at low Reynolds number and in a certain range of values of the viscoelastic parameters, to analyze the combined effects of inertia and viscoelasticity on the flow. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

19.
Numerical methods for incompressible miscible flow in porous media have been studied extensively in the last several decades. In practical applications, the lowest-order Galerkin-mixed method is the most popular one, where the linear Lagrange element is used for the concentration and the lowest order Raviart–Thomas mixed element pair is used for the Darcy velocity and pressure. The existing error estimate of the method in L2 -norm is in the order in spatial direction, which however is not optimal and valid only under certain extra restrictions on both time step and spatial meshes, excluding the most commonly used mesh h = hp = hc . This paper focuses on new and optimal error estimates of a linearized Crank–Nicolson lowest-order Galerkin-mixed finite element method (FEM), where the second-order accuracy for the concentration in both time and spatial directions is established unconditionally. The key to our optimal error analysis is an elliptic quasi-projection. Moreover, we propose a simple one-step recovery technique to obtain a new numerical Darcy velocity and pressure of second-order accuracy. Numerical results for both two and three-dimensional models are provided to confirm our theoretical analysis.  相似文献   

20.
Start-up thin film flow of fluids of grade three over a vertical longitudinally oscillating solid wall in a porous medium is investigated. The governing non-linear partial differential equation representing the momentum balance is solved by the Fourier-Galerkin approximation. The effect of the porosity, material constants as well as oscillations on the drainage rate and flow enhancement is explored and clarified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号