首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the global behavior of solutions is investigated for a Lotka–Volterra predator–prey system with prey-stage structure. First, we can see that the stability properties of nonnegative equilibria for the weakly coupled reaction–diffusion system are similar to that for the corresponding ODE system, that is, linear self-diffusions do not drive instability. Second, using Sobolev embedding theorems and bootstrap arguments, the existence and uniqueness of nonnegative global classical solution for the strongly coupled cross-diffusion system are proved when the space dimension is less than 10. Finally, the existence and uniform boundedness of global solutions and the stability of the positive equilibrium point for the cross-diffusion system are studied when the space dimension is one. It is found that the cross-diffusion system is dissipative if the diffusion matrix is positive definite. Furthermore, cross diffusions cannot induce pattern formation if the linear diffusion rates are sufficiently large.  相似文献   

2.
A Lotka–Volterra predator–prey model incorporating a constant number of prey using refuges and mutual interference for predator species is presented. By applying the divergency criterion and theories on exceptional directions and normal sectors, we show that the interior equilibrium is always globally asymptotically stable and two boundary equilibria are both saddle points. Our results indicate that prey refuge has no influence on the coexistence of predator and prey species of the considered model under the effects of mutual interference for predator species, which differently from the conclusion without predator mutual interference, thus improving some known ones. Numerical simulations are performed to illustrate the validity of our results.  相似文献   

3.
Leslie's method to construct a discrete two dimensional dynamical system dynamically consistent with the Lotka–Volterra type of competing two species ordinary differential equations is applied in a newly extended manner for the Lotka–Volterra prey–predator system which is structurally unstable. We show that, independently of the time step size, the derived discrete prey–predator system is dynamically consistent with the continuous counterpart, keeping the nature of neutrally stable periodic orbit. Further, we show that the extended method to construct the discrete prey–predator system can provide a dynamically consistent model also for the logistic Lotka–Volterra one.  相似文献   

4.
Changes in the number and stability of equilibrium points in the Lotka–Volterra model as well as some of its generalizations that lead to qualitative changes in the behavior of the system as a function of some of its parameters are studied by bifurcation analysis. A generalization involving a cubic interaction as proposed by Nutku is shown to change the stability properties in a simple way and in particular cases introduce additional stability. Numerical methods and the approach provided by approximate techniques near equilibrium points are used in the analysis.  相似文献   

5.
We consider a predator–prey model, where some prey are completely free from predation within a temporal or spacial refuge. The most common type of spacial refuge, that we investigate here, takes the form where a constant proportion of the prey population is protected. The model is a modification of the classical Nicholson–Bailey host-parasitoid model. In this paper, we study the effect of the presence of refuge on the stability and bifurcation of the system. Moreover, we provide a detailed analysis of the Neimark–Sacker bifurcation of the model.  相似文献   

6.
According to biological and chemical control strategy for pest, we investigate the dynamic behavior of a Lotka–Volterra predator–prey state-dependent impulsive system by releasing natural enemies and spraying pesticide at different thresholds. By using Poincaré map and the properties of the Lambert WW function, we prove that the sufficient conditions for the existence and stability of semi-trivial solution and positive periodic solution. Numerical simulations are carried out to illustrate the feasibility of our main results.  相似文献   

7.
This article discusses a predator–prey system with predator saturation and competition functional response. The local stability, existence of a Hopf bifurcation at the coexistence equilibrium and stability of bifurcating periodic solutions are obtained in the absence of diffusion. Further, we discuss the diffusion-driven instability, Hopf bifurcation for corresponding diffusion system with zero flux boundary condition and Turing instability region regarding the parameters are established. Finally, numerical simulations supporting the theoretical analysis are also included.  相似文献   

8.
The disease effect on ecological systems is an important issue from mathematical and experimental point of view. In this paper, we formulate and analyze a predator–prey model for the susceptible population, infected population and their predator population with modified Leslie–Gower (or Holling–Tanner) functional response. Mathematical analysis of the model equations with regard to invariance of nonnegativity and boundedness of solutions, local and global stability of the biological feasible equilibria and permanence of the system are presented. When the rate of infection crosses a critical value, we determine that the strictly positive interior equilibrium undergoes Hopf bifurcation. From our numerical simulations, we observe that the predation rate also plays an important role on the dynamic behavior of our system.  相似文献   

9.
This paper is concerned with the time periodic traveling wave solutions for a periodic Lotka–Volterra predator–prey system, which formulates that both species synchronously invade a new habitat. We first establish the existence of periodic traveling wave solutions by combining the upper and lower solutions with contracting mapping principle and Schauder’s fixed point theorem. The asymptotic behavior of nontrivial solution is given precisely by the stability of the corresponding kinetic system that has been widely investigated. Then, the nonexistence of periodic traveling wave solutions is confirmed by applying the theory of asymptotic spreading. We show the conclusion for all positive wave speed and obtain the minimal wave speed.  相似文献   

10.
11.
This paper is concerned with a mathematical model dealing with a predator–prey system with disease in the prey. Mathematical analysis of the model regarding stability has been performed. The effect of delay on the above system is studied. By regarding the time delay as the bifurcation parameter, the stability of the positive equilibrium and Hopf bifurcations are investigated. Furthermore, the direction of Hopf bifurcations and the stability of bifurcated periodic solutions are determined by applying the normal form theory and the center manifold reduction for functional differential equations. Finally, to verify our theoretical predictions, some numerical simulations are also included.  相似文献   

12.
It is observed that in large animals only adult predators take part in direct predation while suckling feed on milk of adult predators and juveniles are dependent on the dead prey stock killed by the adult predators. Some parts of the dead prey population is consumed by adult predators and remaining parts are consumed by juveniles and the remaining portion decays naturally. In light of this, a mathematical model is proposed to study the stability and bifurcation behaviour of a prey–predator system with age based predation. All the feasible equilibria of the system are obtained and the conditions for the existence of the interior equilibrium are determined. The local stability analysis of all the feasible equilibria is carried out and the possibility of Hopf-bifurcation of the interior equilibrium is studied. Finally, numerical simulation is conducted to support the analytical results.  相似文献   

13.
In this study, we consider a fractional prey–predator scavenger model as well as harvesting by a predator and scavenger. We prove the positivity and boundedness of the solutions in this system. The model undergoes a Hopf bifurcation around one of the existing equilibria where the conditions are met for the occurrence of a Hopf bifurcation. The results show that chaos disappears in this biological model. We conclude that the fractional system is more stable compared with the classical case and the stability domain can be extended under fractional order. In addition, a suitable amount of prey harvesting and a fractional order derivative can control the chaotic dynamics and stabilize them. We also present an extended numerical simulation to validate the results.  相似文献   

14.
In this investigation, we offer and examine a predator–prey interacting model with prey refuge in proportion to both the species and Beddington–DeAngelis functional response. We first prove the well-posedness of the temporal and spatiotemporal models which are restricted in a positive invariant region. Then for the temporal model, we analyse its temporal dynamics including uniform boundedness, permanence, stability of all feasible non-negative equilibria and show that refugia can induce periodic oscillation via Hopf bifurcation around the unique positive equilibrium; for the spatiotemporal model, we not only investigate its permanence, stability of non-negative constant steady states and Turing instability but also study the existence and non-existence of non-constant positive steady states by Leray–Schauder degree theory. The key observation is that the coefficient of refuge cooperates a significant part in modifying the dynamics of the current system and mediates the population permanence, stability of coexisting equilibrium and even the Turing instability parameter space. Finally, general numerical simulation consequences are given to illustrate the validity of the theoretical results. Through numerical simulations, one observes that the model dynamics shows prey refugia and self-diffusion control spatiotemporal pattern growth to spots, stripe–spot mixtures and stripes reproduction. The outcomes assign that the dynamics of the model with prey refuge is not simple, but rich and complex. Additionally, numerical simulations show that the other model parameters have an important effect on species’ spatially inhomogeneous distribution, which results in the formation of spots pattern, mixture of spots and stripes pattern, mixture of spots, stripes and rings pattern and anti-spot pattern. This may improve the model dynamics of the prey refuge on the reaction–diffusion predator–prey system.  相似文献   

15.
16.
In this paper, we analyze the spatial pattern of a predator–prey system. We get the critical line of Hopf and Turing bifurcation in a spatial domain. In particular, the exact Turing domain is given. Also we perform a series of numerical simulations. The obtained results reveal that this system has rich dynamics, such as spotted, stripe and labyrinth patterns, which shows that it is useful to use the reaction–diffusion model to reveal the spatial dynamics in the real world.  相似文献   

17.
This paper concerns with a new delayed predator–prey model with stage structure on prey, in which the immature prey and the mature prey are preyed by predator and the delay is the length of the immature stage. Mathematical analysis of the model equations is given with regard to invariance of non-negativity, boundedness of solutions, permanence and global stability and nature of equilibria. Our work shows that the stage structure on the prey is one of the important factors that affect the extinction of the predator, and the predation on immature prey is a cause of periodic oscillation of population and can make the behaviors of the system more complex. The predation on the immature and mature prey brings both positive and negative effects on the permanence of the predator, if ignore the predation on immature prey in the system, the stage-structure on prey brings only negative effect on the permanence of the predator.  相似文献   

18.
19.
20.
This paper examines the cycling behavior of a deterministic and a stochastic version of the economic interpretation of the Lotka–Volterra model, the Goodwin model. We provide a characterization of orbits in the deterministic highly non-linear model. We then study a stochastic version, with Brownian noise introduced via a heterogeneous productivity factor. Existence conditions for a solution to the system are provided. We prove that the system produces cycles around a unique equilibrium point in finite time for general volatility levels, using stochastic Lyapunov techniques for recurrent domains. Numerical insights are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号