首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Sven-Joachim Kimmerle 《PAMM》2016,16(1):697-698
We consider an elastic structure that is subject to moving loads representing e.g. heavy trucks on a bridge or a trolley on a crane beam. A model for the quasi-static mechanical behaviour of the structure is derived, yielding a coupled problem involving partial differential equations (PDE) and ordinary differential equations (ODE). The problem is simulated numerically and validated by comparison with a standard formula used in engineering. We derive an optimal policy for passing over potentially fragile bridges. In general, our problem class leads to optimal control problems subject to coupled ODE and PDE. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
This article deals with the analysis of trolley impact on the dynamic behaviour of the flexible structure of the mega quayside container crane (QCC) boom, identified as the most relevant structural part. It develops a modelling method for the dynamic response of the large flexible structure of the QCC boom under a moving trolley. By using FEM the original structure of the whole crane structure is reduced to an equivalent model of the boom. The boom is in this way modelled as a system with distributed parameters, comprising reduced stiffnesses and lumped masses from other parts of the upper structure. The article looks at the moving mass approach to achieve the desired performance of the QCC. Differential equations of the mathematical model are obtained by using Lagrange's equations and the assumed mode method. The continuum is discretized by a finite number of admissible functions. Deterministic simulation gives the dynamic response of the boom for quay-to-ship container transfer. Results are obtained for the boom deflection and bending moment values, as well as for the dynamic amplification factor of deflection.  相似文献   

3.
Within power plants, several physical, chemical and mechanical processes are conducted to transfer the energy, stored in fossil fuel, into electrical energy. This energy conversion is divided into several stages. Hitherto, the largest conventional power plants employ steam turbines as prime movers to drive a generator. Hence, a steam turbine is one module to convert heat energy into mechanical energy. And thus it is one link in the chain of energy conversions with the aim of generating electrical energy. Today, steam turbine industry faces numerous challenges concerning efficiency, commissioning time, start-up times, operation, availability, safety, cost-effectiveness, etc. Many of these tasks can be supported by simulating the transient operational behaviour of the turbine in advance. For example, the commissioning time can be shortened if the turbine controllers are initialized with well-tuned pre-set parameters; cost-effectiveness can be increased by setting aside unnecessary devices and exactly determining material specifications; safety may be increased by predicting the impacts of failures and thus taking the necessary precautions. Different tasks require different details regarding the employed turbine simulation model. Thus, the turbine controller may be well tuned with less complex simulation models of turbine, generator and electrical grid, whereas detailed studies of failures, mainly the transient behaviour which may lead to serious damages, may require detailed modelling of the turbine-internal thermodynamic processes. Here, a brief overview of models which simulate the transient thermodynamic behaviour of a steam turbine is presented. Three different approaches will be introduced and compared with respect to different operating situations. Also, special attention is directed towards the time dependence of critical states, mainly turbine speed and pressure development in certain areas. The first model is based on a simple, linear approach and is suitable of giving a quick overview. The second one incorporates more details and is useful if the operating point is close to the design point. Finally, the last model incorporates mass and energy balances as well as the major non-linearities. Hence it depicts the turbine behaviour over a large range of operating points.  相似文献   

4.
ABSTRACT

In this paper, a mathematical model is developed based on the heat transfer of stored grains aerated in a cylindrical silo. This work is a part of study that aims to model the whole process of cereal storage system including a dehumidifier. The use of dehumidifier is intended to remove excess moisture from the airflow injected by the ventilator system in the silo filled with wheat, and to keep hygroscopic properties of grain in safe level during the storage period. Temperature and humidity are the two important variables coupled to control the process and to preserve grain quality. The laboratory device permitted us to achieve several tests for different conditions of grain stored in silo without aeration. A simulation of the airflow through the thermal space of the silo and grain parameters has been carried out. The results are reasonably in agreement with experiments and other published data. The system performance is evaluated at critical conditions of storage boundaries.  相似文献   

5.
Physico-chemical processes on the micro-scale require new modelling concepts because some effects become dominating that are negligible for macroscopic systems. This is illustrated by a new method for the production of micro-wells based on the placement of a small drop of toluene on a plate of polystyrene. After droplet evaporation, a micro-well is left. A mathematical model has been developed to understand the elementary processes of the micro-well formation. The model accounts for: (1) growth of the drop on the substrate, (2) evaporation process of the solvent, (3) dissolution of the substrate, (4) flow rate in the evaporating drop caused by the pinning effect, including the vertical velocity profile, and (5) increase in the concentration of dissolved material followed by precipitation. In the modelling and simulation process, it could be shown that the method of drop production also has a significant influence on the shape of the micro-wells.  相似文献   

6.
ABSTRACT

Dancing Viennese Waltz in one of the great historic ballrooms is an important and indispensable part of Austrian culture. This dance, while being tradition, is quite difficult to perform, especially if the dance-floor is crowded. There, it is additionally challenging to avoid collisions with other dancers, as they pace through the ballroom at a high velocity. Dependent on the dancer’s skill level, spinning speed can be adjusted to succeed. This paper presents an agent-based waltz model which makes it possible to investigate the influence of heterogeneously skilled dancers on the movement smoothness of the dancing crowd. Herein, each agent represents one dancing couple in reality and it moves on the dance-floor by a rotatory motion with periodically switching rotation axes. Interaction between agents occurs via inelastic collisions. By performing a couple of case studies, we analyse and quantify the widespread rumour that the presence of only a few unskilled dancers disturbs the flow of the dancing crowd.  相似文献   

7.
8.
This paper surveys topics that presently define the state of the art in parallel simulation. Included in the tutorial are discussions on new protocols, mathematical performance analysis, time parallelism, hardware support for parallel simulation, load balancing algorithms, and dynamic memory management for optimistic snchronization.  相似文献   

9.
A new constant-pressure molecular dynamics (MD) method is developed to simulate the dynamic behavior and structure transition of finite system under external pressure. In this method, no artificial parameter is introduced and the computation overheads are very small. As an application, a hard-soft transition of single wall carbon nanotube  相似文献   

10.
The gas dynamics in an exhaust pipe is studied. In particular we focus on the warm up of the catalytic converter in very short times after the engine start. This is done by combustion a small unburnt part of the exhaust gas. This process is classically modelled by gas dynamic equations. Compared to the existing literature we improve the (one-dimensional) modelling approach using a small Mach number technique and a network ansatz for the full exhaust pipe. The final simplified model on one hand still describes the main features and on the other hand it is computationally a few orders of magnitude faster than the original model. Performing numerical simulations we compare the new model to the (classical) full model and to experimental results in the literature.  相似文献   

11.
Due to the light-weight construction of modern large-scale manipulators used, e.g., in mobile concrete pumps, the elasticity of the construction elements plays a significant role in the dynamic behaviour of the system. Therefore, current research is concerned with control strategies for active damping of elastic vibrations and trajectory planning. For this purpose, tailored mathematical models are required. Apart from the mathematical modelling, the identification of the model parameters constitutes a challenging task. This is mainly due to the large number of parameters to be identified and, considering the large scale, due to the fact that the boom movement cannot be measured by means of standard sensors. This paper presents a systematic approach for the mathematical modelling and identification of hydraulically actuated large-scale manipulators. The feasibility of the overall approach is demonstrated by means of measurement results of a mobile concrete pump.  相似文献   

12.
Developing accurate non-linear dynamical models for heat recovery steam generator (HRSG) units is presented in this article. The common non-linear autoregressive with exogenous input (NARX) system topology was employed to develop the neuro-fuzzy models based on the experimental data taken during field experiments. In this structure, the non-linear behaviours of the HRSG unit can be characterized through interpolation of local linear models associated with different operating regions via fuzzy inference mechanism. The operating regimes were recognized by applying a genetic algorithm-based fuzzy clustering technique to the prepared data sets. The structures of the fuzzy models are defined with respect to the obtained optimal cluster centres and the corresponding membership functions. The parameters of fuzzy rules were adjusted by recursive least-squares estimation method to fit the model responses to real data. The performances of developed models were evaluated by performing a comparison between the model responses and the responses of the real plant. In addition, the stability of the developed models was assessed by perturbing the model inputs from the nominal values. This guarantees the long-term simulation capabilities of the developed models. A comparison between the responses of the corresponding models and the models obtained from some recent modelling approaches was performed to show the advantages of the developed models. The results show the accuracy and reliability of the developed models at transient and steady-state conditions.  相似文献   

13.
A numerical model of particle motion in fluid flow under the influence of hydrodynamic and magnetic forces is presented. As computational tool, a flow solver based on the Boundary Element Method is used. The Euler-Lagrange formulation of multiphase flow is considered. In the case of a particle with a magnetic moment in a nonuniform external magnetic field, the Kelvin body force acts on a single particle. The derived Lagrangian particle tracking algorithm is used for simulation of dilute suspensions of particles in viscous flows taking into account gravity, buoyancy, drag, pressure gradient, added mass and magnetophoretic force. As a benchmark test case the magnetite particle motion in cellular flow field of water is computed with and without the action of the magnetic force. The effect of the Kelvin force on particle motion and separation from the main flow is studied for a predefined magnetic field and different values of magnetic flux density. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The paper concerns the simulation of rheological processes in hardening plastics (resins) under stress control. It is assumed that the resins work in the glassy state, under normal conditions, and the rheological processes are quasi-static and isothermal. The reduced stress levels do not exceed 30% of the instantaneous tensile strength. A resin is modelled as a homogeneous, isotropic, linearly viscoelastic material. The HWKK/H rheological model, developed recently by the author, is used. Short-term, medium-term, and long-term shear strain components are considered and described by one fractional and two normal exponential functions as the stress history (memory) functions. A novel algorithm for the numerical simulation of rheological processes in resins has been developed, which is unified for all stress history functions in the HWKK/H model. The algorithm employs the Boltzmann superposition principle, a virtual table for the classic creep process, and a high-rank Gaussian quadrature. The stress function is approximated with a stair case function. The constitutive equations governing the HWKK/H model are trans formed into an algebraic form suitable for algorithmization. The problem of quasi-exact calculation of the double-improper integral resulting from the fractional exponential function is solved effectively. The algorithm has been tested successfully on selected loading programs of unidirectional tension of epoxide. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 43, No. 2, pp. 201–212, March–April, 2007.  相似文献   

15.
This paper deals with various aspects of mathematical modelling, qualitative analysis and simulation related to the technological manufacturing process of composite material panels. The mathematical modelling problem consists in defining all mathematical aspects of the optimum deposition strategy.  相似文献   

16.
The mathematical models of gas–liquid two-phase flow are introduced, in which the multi-mode eXtended Pom–Pom (XPP) model is selected to predict the viscoelastic behavior of polymer melt. The gas-penetration process is simulated using Level Set/SIMPLEC methods, which can capture the moving interfaces at different time, including the gas–melt interface and the melt front. The physical features such as velocity, temperature and elasticity are described at different time. The influences of gas delay time and injection pressure on gas-penetration time and penetration length are analyzed. The numerical results show that the Level Set/SIMPLEC methods can precisely trace the two moving interfaces in gas-penetration process, the fractional coverage increases at very low Deborah numbers, while at higher Deborah numbers the fractional coverage decreases, and the penetration length is affected significantly by gas delay time and injection pressure.  相似文献   

17.
In the present study, new constitutive models for high strength steel fibre reinforced concrete (HSSFRC) have been formulated by means of a regression analysis of many experimental data (from literature) by using SPSS-statistical program. This proposed constitutive models have been employed for formulating the material finite element models to study the behaviour of HSSFRC corbels.  相似文献   

18.
19.
Aria Alimi  Olaf Wünsch 《PAMM》2015,15(1):501-502
This work deals with the modeling and simulation of mixture process in a biogas plant. This mixing process involves a closed pumping procedure, which pumps the constituents of the biogas plant using jet agitators inside the tank. For this purpose, an experimental model has been designed and built in reduced scale to study the mixture process. Furthermore, this process has been simulated numerically. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
This paper describes fuzzy modelling and simulation of a supply chain (SC) in an uncertain environment, as the first step in developing a decision support system. An SC is viewed as a series of facilities that performs the procurement of raw material, its transformation to intermediate and end-products, and distribution and selling of the end-products to customers. All the facilities in the SC are coupled and interrelated in a way that decisions made at one facility affect the performance of others. SC fuzzy models and a simulator cover operational SC control. The objective is to determine the stock levels and order quantities for each inventory in an SC during a finite time horizon to obtain an acceptable delivery performance at a reasonable total cost for the whole SC. Two sources of uncertainty inherent in the external environment in which the SC operates were identified and modelled: customer demand and external supply of raw material. They were interpreted and represented by fuzzy sets. In addition to the fuzzy SC models, a special SC simulator was developed. The SC simulator provides a dynamic view of the SC and assesses the impact of decisions recommended by the SC fuzzy models on SC performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号