首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The generating function methods have been applied successfully to generalized Hamiltonian systems with constant or invertible Poisson-structure matrices. In this paper, we extend these results and present the generating function methods preserving the Poisson structures for generalized Hamiltonian systems with general variable Poisson-structure matrices. In particular, some obtained Poisson schemes are applied efficiently to some dynamical systems which can be written into generalized Hamiltonian systems (such as generalized Lotka-Volterra systems, Robbins equations and so on).  相似文献   

2.
3.
The orbits and the dynamical symmetries for the screened Coulomb potentials and isotropic harmonic oscillators have been studied by Wu and Zeng[Z.B.Wu and J.Y.Zeng,Phys.Rev.A 62(2000)032509].We find similar properties in the corresponding systems in a spherical space,whose dynamical symmetries are described by Higgs algebra.There exist extended Runge-Lenz vector for screened Coulomb potentials and extended quadruple tensor for screened harmonic oscillators.They,together with angular momentum,constitute the generators of the geometrical symmetry group.Moreover,there exist an infinite number of closed orbits for suitable angular momentum values,and we give the equations of the classical orbits.The eigenenergy spectrum and corresponding eigenstates in these systems are derived.  相似文献   

4.
The orbits and the dynamical symmetries for the screened Coulomb potentials and isotropic harmonic oscillators have been studied by Wu and Zeng [Z.B. Wu and J.Y. Zeng, Phys. Rev. A 62 (2000) 032509]. We find similar properties in the corresponding systems in a spherical space, whose dynamical symmetries are described by Higgs algebra. There exist extended Runge-Lenz vector for screened Coulomb potentials and extended quadruple tensor for screened harmonic oscillators. They, together with angular momentum, constitute the generators of the geometrical symmetry group. Moreover, there exist an infinite number of closed orbits for suitable angular momentum values, and we give the equations of the classical orbits. The eigenenergy spectrum and corresponding eigenstates in these systems are derived.  相似文献   

5.
The theorem on symmetries is proved that states that a Liouville-integrable Hamiltonian system is non-degene\-rate in Kolmogorov's sense and has compact invariant submanifolds if and only if the corresponding Lie algebra of symmetries is abelian. The theorem on symmetries has applications to the characterization problem, to the integrable hierarchies problem, to the necessary conditions for the strong dynamical compatibility problem, and to the problem on master symmetries. The invariant necessary conditions for the non-degenerate C-integrability in Kolmogorov's sense of a given dynamical system V are derived. It is proved that the C-integrable Hamiltonian system is non-degenerate in the iso-energetic sense if and only if the corresponding Lie algebra of the iso-energetic conformal symmetries is abelian. An extended concept of integrability of Hamiltonian systems on the symplectic manifolds M n , n= 2k, is introduced. The concept of integrability describes the Hamiltonian systems that have quasi-periodic dynamics on tori or on toroidal cylinders of an arbitrary dimension . This concept includes, as a particular case, all Hamiltonian systems that are integrable in Liouville's classical sense, for which . The A-B-C-cohomologies are introduced for dynamical systems on smooth manifolds. Received: 16 January 1996 / Accepted: 3 July 1996  相似文献   

6.
The Hamiltonian of a model system has been diagonalized numericaUy to obtain the eigenstates and eigenenergies. Three types of permutation symmetries: the antisymmetric, the mixed symmetric and the symmetric symmetries have been covered. The dynamical parameters (i.e., the particle mass and the particle-particle interaction) are taken appropriately for a particles, however a series ,of qualitative features are revealed to be iden tical with those of quantum dot electronic systems in semiconductor heterojunctions. We stress the importance of quantum mechanical symmetries in the understanding of quantum mechanical few-body systems.  相似文献   

7.
We find numerically small scale basic structures of homoclinic bifurcation curves in the parameter space of the Chua circuit. The distribution of these basic structures in the parameter space and their geometrical properties constitute a complete homoclinic bifurcation scenario of this system. Furthermore, these structures and the scenario are theoretically demonstrated to be generic to a large class of dynamical systems that presents, as the Chua circuit, Shilnikov homoclinic orbits. We classify the complexity of primary and subsidiary homoclinic orbits by their order given by the number of their returning loops. Our results confirm previous predictions of structures of homoclinic bifurcation curves and extend this study to high order primary orbits. Furthermore, we identify accumulations of bifurcation curves of subsidiary homoclinic orbits into bifurcation curves of both primary and subsidiary orbits.  相似文献   

8.
傅景礼  陈立群  谢凤萍 《中国物理》2004,13(10):1611-1614
This paper focuses on studying Lie symmetries and non-Noether conserved quantities of Hamiltonian dynamical systems in phase space. Based on the infinitesimal transformations with respect to the generalized coordinates and generalized momenta, we obtain the determining equations and structure equation of the Lie symmetry for Hamiltonian dynamical systems. This work extends the research of non-Noether conserved quantity for Hamilton canonical equations, and leads directly to a new type of non-Noether conserved quantities of the systems. Finally, an example is given to illustrate these results.  相似文献   

9.
In this paper, we study the existence and dynamics of bounded traveling wave solutions to Getmanou equations by using the qualitative theory of differential equations and the bifurcation method of dynamical systems. We show that the corresponding traveling wave system is a singular planar dynamical system with two singular straight lines, and obtain the bifurcations of phase portraits of the system under different parameters conditions. Through phase portraits, we show the existence and dynamics of several types of bounded traveling wave solutions including solitary wave solutions, periodic wave solutions, compactons, kink-like and antikink-like wave solutions. Moreover, the expressions of solitary wave solutions are given. Additionally, we confirm abundant dynamical behaviors of the traveling wave s olutions to the equation, which are summarized as follows: i) We confirm that two types of orbits give rise to solitary wave solutions, that is, the homoclinic orbit passing the singular point, and the composed homoclinic orbit which is comprised of two heteroclinic orbits and tangent to the singular line at the singular point of associated system. ii) We confirm that two types of orbits correspond to periodic wave solutions, that is, the periodic orbit surrounding a center, and the homoclinic orbit of associated system, which is tangent to the singular line at the singular point of associated system.  相似文献   

10.
董成伟 《物理学报》2018,67(24):240501-240501
混沌系统的奇怪吸引子是由无数条周期轨道稠密覆盖构成的,周期轨道是非线性动力系统中除不动点之外最简单的不变集,它不仅能够体现出混沌运动的所有特征,而且和系统振荡的产生与变化密切相关,因此分析复杂系统的动力学行为时获取周期轨道具有重要意义.本文系统地研究了非扩散洛伦兹系统一定拓扑长度以内的周期轨道,提出一种基于轨道的拓扑结构来建立一维符号动力学的新方法,通过变分法数值计算轨道显得很稳定.寻找轨道初始化时,两条轨道片段能够被用作基本的组成单元,基于整条轨道的结构进行拓扑分类的方式显得很有效.此外,讨论了周期轨道随着参数变化时的形变情况,为研究轨道的周期演化规律提供了新途径.本研究可为在其他类似的混沌体系中找到并且系统分类周期轨道提供一种可借鉴的方法.  相似文献   

11.
张毅 《物理学报》2002,51(11):2417-2422
研究小干扰力作用下约束哈密顿系统对称性的摄动问题.建立了非保守约束哈密顿系统的正则方程,在增广相空间中研究了系统的对称性与精确不变量.基于力学系统的高阶绝热不变量的概念,给出了系统的各阶绝热不变量的形式及存在条件,并建立了绝热不变量与对称变换之间的对应关系 关键词: 约束哈密顿系统 对称性 摄动 不变量  相似文献   

12.
In this letter, we investigate Noether symmetries and conservation laws of discrete dynamical systems on an uniform lattice with the nonholonomic constraints. Based on the quasi-invariance of discrete Hamiltonian action of the systems under the infinitesimal transformation with respect to the time and generalized coordinates, we give the discrete analogue of generalized variational formula of the systems. From this formula we derive the discrete analogue of generalized Noether-type identity, and then we present the generalized quasi-extremal equations of the systems. We also obtain the discrete analogue of Noether theorems and the discrete analogue of Noether conservation laws of the systems. Finally, an example is discussed to illustrate these results.  相似文献   

13.
We summarize various cases where chaotic orbits can be described analytically. First we consider the case of a magnetic bottle where we have non-resonant and resonant ordered and chaotic orbits. In the sequence we consider the hyperbolic Hénon map, where chaos appears mainly around the origin, which is an unstable periodic orbit. In this case the chaotic orbits around the origin are represented by analytic series (Moser series). We find the domain of convergence of these Moser series and of similar series around other unstable periodic orbits. The asymptotic manifolds from the various unstable periodic orbits intersect at homoclinic and heteroclinic orbits that are given analytically. Then we consider some Hamiltonian systems and we find their homoclinic orbits by using a new method of analytic prolongation. An application of astronomical interest is the domain of convergence of the analytical series that determine the spiral structure of barred-spiral galaxies.  相似文献   

14.
We study periodic orbits of Hamiltonian differential systems with three degrees of freedom using the averaging theory. We have chosen the classical integrable Hamiltonian system with the Hooke potential and we study periodic orbits which bifurcate from the periodic orbits of the integrable system perturbed with a non-autonomous potential.  相似文献   

15.
The class of fractional Hamiltonian systems that generalize the classical problem of the two-dimensional (2D) isotropic harmonic oscillator and the Kepler problem is considered. It is shown that, in the 4D space of structural parameters, the 2D isotropic harmonic oscillator can be extended along a line in such a way that the orbits remain closed and oscillations remain isochronous. Likewise, the Kepler problem can be extended along a line in such a way that the orbits remain closed for all finite motions and the third Kepler law remains valid. These curves lie on the 2D surfaces where any dynamical system is characterized by the same rotation number for all finite motions.  相似文献   

16.
钟双英  刘崧 《物理学报》2012,61(12):120401-120401
本文利用辛算法和功率谱研究旋转致密双星保守的后牛顿哈密顿系统的引力辐射, 讨论了系统的动力学参量、旋转-轨道耦合、旋转-旋转耦合效 应及轨道类型对后牛顿近似引力波形的影响. 数值结果表明有序轨道的引力波随时间呈周期性地变化, 而混沌轨道引力波的变化具有混沌性, 并且轨道的混沌特性可提高引力波的辐射能量, 尤其指出的是旋转参量大小对引力波形的变化发挥至关重要的作用.  相似文献   

17.
In this paper we apply dynamical systems techniques to the problem of heteroclinic connections and resonance transitions in the planar circular restricted three-body problem. These related phenomena have been of concern for some time in topics such as the capture of comets and asteroids and with the design of trajectories for space missions such as the Genesis Discovery Mission. The main new technical result in this paper is the numerical demonstration of the existence of a heteroclinic connection between pairs of periodic orbits: one around the libration point L(1) and the other around L(2), with the two periodic orbits having the same energy. This result is applied to the resonance transition problem and to the explicit numerical construction of interesting orbits with prescribed itineraries. The point of view developed in this paper is that the invariant manifold structures associated to L(1) and L(2) as well as the aforementioned heteroclinic connection are fundamental tools that can aid in understanding dynamical channels throughout the solar system as well as transport between the "interior" and "exterior" Hill's regions and other resonant phenomena. (c) 2000 American Institute of Physics.  相似文献   

18.
The Hénon–Heiles potential was first proposed as a simplified version of the gravitational potential experimented by a star in the presence of a galactic center. Currently, this system is considered a paradigm in dynamical systems because despite its simplicity exhibits a very complex dynamical behavior. In the present paper, we perform a series expansion up to the fifth-order of a potential with axial and reflection symmetries, which after some transformations, leads to a generalized Hénon–Heiles potential. Such new system is analyzed qualitatively in both regimes of bounded and unbounded motion via the Poincaré sections method and plotting the exit basins. On the other hand, the quantitative analysis is performed through the Lyapunov exponents and the basin entropy, respectively. We find that in both regimes the chaoticity of the system decreases as long as the test particle energy gets far from the critical energy. Additionally, we may conclude that despite the inclusion of higher order terms in the series expansion, the new system shows wider zones of regularity (islands) than the ones present in the Hénon–Heiles system.  相似文献   

19.
This paper presents a two-step symplectic geometric approach to the reduction of Hamilton’s equation for open-chain, multi-body systems with multi-degree-of-freedom holonomic joints and constant momentum. First, symplectic reduction theorem is revisited for Hamiltonian systems on cotangent bundles. Then, we recall the notion of displacement subgroups, which is the class of multi-degree-of-freedom joints considered in this paper. We briefly study the kinematics of open-chain multi-body systems consisting of such joints. And, we show that the relative configuration manifold corresponding to the first joint is indeed a symmetry group for an open-chain multi-body system with multi-degree-of-freedom holonomic joints. Subsequently using symplectic reduction theorem at a non-zero momentum, we express Hamilton’s equation of such a system in the symplectic reduced manifold, which is identified by the cotangent bundle of a quotient manifold. The kinetic energy metric of multi-body systems is further studied, and some sufficient conditions are introduced, under which the kinetic energy metric is invariant under the action of a subgroup of the configuration manifold. As a result, the symplectic reduction procedure for open-chain, multi-body systems is extended to a two-step reduction process for the dynamical equations of such systems. Finally, we explicitly derive the reduced dynamical equations in the local coordinates for an example of a six-degree-of-freedom manipulator mounted on a spacecraft, to demonstrate the results of this paper.  相似文献   

20.
When a dynamical system is investigated from a time series, one of the most challenging problems is to obtain a model that reproduces the underlying dynamics. Many papers have been devoted to this problem but very few have considered the influence of symmetries in the original system and the choice of the observable. Indeed, it is well known that there are usually some variables that provide a better representation of the underlying dynamics and, consequently, a global model can be obtained with less difficulties starting from such variables. This is connected to the problem of observing the dynamical system from a single time series. The roots of the nonequivalence between the dynamical variables will be investigated in a more systematic way using previously defined observability indices. It turns out that there are two important ingredients which are the complexity of the coupling between the dynamical variables and the symmetry properties of the original system. As will be mentioned, symmetries and the choice of observables also has important consequences in other problems such as synchronization of nonlinear oscillators. (c) 2002 American Institute of Physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号