共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates a resources-limited situation in the event-triggered model predictive control (ETMPC) for continuous-time nonlinear system with first-order hold fashion. In consideration of limited bandwidth in data transmission through wireless network under actual operation, our strategy divides the prediction horizon, and applies linear interpolation instead of zero-order hold fashion to obtain a better system performance, so that the reduction of resources and the optimization of strategy can be guaranteed. Furthermore, in actual industry processes, quadratic cost function cannot be implemented in all operations, then general cost function is adopted in this paper. Based on the first-order hold method and general cost function, the feasibility of the ETMPC algorithm and the stability of dynamical systems are analyzed. At last, a practical example is given to show the advantages of our method. 相似文献
3.
In this paper, we study a flexible piecewise approximation technique based on the use of the idea of the partition of unity. The approximations are piecewisely defined, globally smooth up to any order, enjoy polynomial reproducing conditions, and satisfy nodal interpolation conditions for function values and derivatives of any order. We present various properties of the approximations, that are desirable properties for optimal order convergence in solving boundary value problems.
AMS subject classification 65N30, 65D05Weimin Han: Corresponding author. The work of this author was partially supported by NSF under grant DMS-0106781.Wing Kam Liu: The work of this author was supported by NSF. 相似文献
4.
In this paper, we propose a memory state feedback model predictive control (MPC) law for a discrete-time uncertain state delayed system with input constraints. The model uncertainty is assumed to be polytopic, and the delay is assumed to be unknown, but with a known upper bound. We derive a sufficient condition for cost monotonicity in terms of LMI, which can be easily solved by an efficient convex optimization algorithm. A delayed state dependent quadratic function with an estimated delay index is considered for incorporating MPC problem formulation. The MPC problem is formulated to minimize the upper bound of infinite horizon cost that satisfies the sufficient conditions. Therefore, a less conservative sufficient conditions in terms of linear matrix inequality (LMI) can be derived to design a more robust MPC algorithm. A numerical example is included to illustrate the effectiveness of the proposed method. 相似文献
5.
ABSTRACTThe single input single output (SISO) system with known strong interference is widely used in various occasions. Due to its strong interference, the control accuracy is hard to guarantee. To solve this problem, an improved generalized predictive control (IGPC) algorithm is developed. The IGPC firstly builds the difference equation CARIMA (Controlled Auto-Regressive Integrated Moving-Average) model of the SISO system and then treats the system as a two input single output (TISO) system and calculates its predictive vector, then transforms it into a SISO system and uses the TISO system predictive vector to calculate the SISO system control increment. A new parameter called phase coefficient is added to inhibit the control lag. Simulations are performed to make the comparison among the traditional GPC, PID control, velocity synchronization control (VSC), fuzzy adaptive PID control (FAPID), model-based robust PID control (BPID) and the IGPC. Results show that IGPC has best performance compared to the others. Finally, experiments are developed which proved that the IGPC algorithm has a higher accuracy in the SISO system with known strong interference than that of VSC. 相似文献
6.
This paper deals with the problem of damping driveline oscillations, which is crucial to improving driveability and passenger comfort. Recently, this problem has received an increased interest due to the introduction in several production vehicles of the dual-clutch powershift automatic transmission with dry clutches. This type of transmission improves fuel economy, but it results in a challenging control problem, due to driveline oscillations. These oscillations, also called “shuffles”, occur during gear-shift, while traversing backlash or when tip-in and tip-out maneuvers are performed. The contribution of this paper is to demonstrate that horizon-1 model predictive control based on flexible Lyapunov functions and piecewise affine drivetrain models with three inertias provides an effective solution to driveline oscillation damping. Several simulations based on realistic scenarios show that the proposed control scheme can handle both the performance and physical constraints, and the strict limitations on the computational complexity. 相似文献
7.
The paper deals with model predictive control (MPC) of nonlinear hybrid systems with discrete inputs based on reachability analysis. In order to implement a MPC algorithm, a model of the process that we are dealing with is needed. In the paper, a hybrid fuzzy modelling approach is proposed. The hybrid system hierarchy is explained and the Takagi–Sugeno fuzzy formulation for hybrid fuzzy modelling purposes is tackled. An efficient method of identification of the hybrid fuzzy model is also discussed. An algorithm that is–due to its MPC nature–suitable for controlling a wide spectrum of systems (provided that they have discrete inputs only) is presented. The benefits of the algorithm employing a hybrid fuzzy model are verified on a batch reactor example. The results suggest that by suitably determining the cost function, satisfactory control can be attained, even when dealing with complex hybrid–nonlinear–stiff systems such as the batch reactor. Finally, a comparison between MPC employing a hybrid linear model and a hybrid fuzzy model is carried out. It has been established that the latter approach clearly outperforms the approach where a linear model is used. 相似文献
8.
In this paper, we formulate and investigate the synchronization of stochastic coupled systems via feedback control based on discrete-time state observations (SCSFD). The discrete-time state feedback control is used in the drift parts of response system. Combining Lyapunov method with graph theory, the upper bound of duration between two consecutive state observations is provided. And a global Lyapunov function of SCSFD is presented, which derives some sufficient criteria to guarantee the synchronization of drive–response systems in the sense of mean-square asymptotical synchronization. In addition, the theoretical results are applied to stochastic coupled oscillators and second-order Kuramoto oscillators. Finally, two numerical examples are given to verify the effectiveness of the theoretical results. 相似文献
9.
This paper investigates the event-triggered impulsive control problem for a class of large-scale nonlinear systems in lower-triangular form. Based on gain scaling technique and impulsive control theory, a novel decentralized event-triggered impulsive control strategy is first put forward by introducing a static scaling gain, where no control input exists between two consecutive triggering points. Moreover, when the large uncertainties exist in system nonlinearities, we further develop a new control strategy by introducing a time-varying scaling gain. It is proved that the proposed closed-loop control strategies exclude the Zeno behavior without sacrificing the global convergence of system states. Compared with the existing results, it is the first time to apply impulsive control to lower-triangular large-scale nonlinear systems, and the advantages of event-triggered impulsive control and gain scaling technique are subtly combined in the proposed control strategies. Finally, two simulation examples are used to demonstrate the effectiveness of the proposed schemes. 相似文献
10.
In this study, we are concerned with the impulsive consensus control problem for a class of nonlinear multi-agent systems (MASs) which have unknown dynamics and directed communication topology. The neural networks (NNs) method is the first utilized to construct distributed event-triggered impulsive consensus protocol. In contrast to the existing impulsive consensus protocol, the consensus protocol proposed in this paper does not need the dynamics of agents, which enhances the system robustness, and realizes distributed event-triggered communication between agents, which can reduce unnecessary consumption of communication resources. Sufficient conditions are derived to ensure the consensus of the controlled MASs and the exclusion of Zeno-behavior. Finally, simulation examples are presented to illustrate the effectiveness of the proposed control protocol. 相似文献
11.
A dominant-data matching method is developed for model simplification and design of digital multivariable sampled-data control systems. A mixed method combining dominant-data matching and the dominant-pole technique is also derived for determining a stable reduced-degree multivariable digital controller. A real semiactive terminal homing missile system is used as an illustrative example. 相似文献
12.
This work develops the development of observer‐based output feedback control design of discrete‐time nonlinear systems in the form of Takagi–Sugeno fuzzy model. Lately, previous results have been improved in virtue of a two‐step method. From a technical point of view, it is not flawless and related problems have not been completely resolved. In this study, more advanced two‐steps approach is further developed while the relative sizes among different normalized fuzzy weighting functions are utilized by introducing some additional matrix variables. As a result of the above work, those main defects of the existing method can be redressed and a desired solution in aspect of not only reducing the conservatism but also alleviating the computation complexity is provided for some special cases. Moreover, the effectiveness of the proposed result is shown at length by means of an illustrative example. © 2016 Wiley Periodicals, Inc. Complexity 21: 593–601, 2016 相似文献
13.
In this article, a control scheme combining radial basis function neural network and discrete sliding mode control method is proposed for robust tracking and model following of uncertain time‐delay systems with input nonlinearity. The proposed robust tracking controller guarantees the stability of overall closed‐loop system and achieves zero‐tracking error in the presence of input nonlinearity, time‐delays, time‐varying parameter uncertainties, and external disturbances. The salient features of the proposed controller include no requirement of a priori knowledge of the upper bound of uncertainties and the elimination of chattering phenomenon and reaching phase. Simulation results are presented to demonstrate the effectiveness of the proposed scheme. © 2015 Wiley Periodicals, Inc. Complexity 21: 194–201, 2016 相似文献
14.
The sliding mode control (SMC) problem is investigated for Markovian jump systems (MJSs) under constrained communication bandwidth. A multi-node hybrid transmission strategy composed of an event-triggered protocol and the weight try-once-discard (WTOD) protocol is introduced into the sensor-to-controller (S/C) channel. Its key feature is that by using two dynamic thresholds, the number of the transmitted components may be dynamically regulated, not just the one with the largest difference as in the conventional WTOD protocol. That may greatly increase the flexibility of transmission under limited bandwidth, meanwhile, it is also beneficial to balance system performance and network burden. Then, a compensating strategy is proposed via the previous transmitted signals, and a scheduling signal-dependent sliding mode controller is designed. By using mode-dependent Lyapunov function, both the stochastic stability and the reachability are analyzed under different transmission cases, respectively. Moreover, an optimization problem on convergent domain is formulated and the binary-encoded genetic algorithm (GA) is utilized to search a desirable sliding gain. Finally, the proposed multi-node hybrid scheduling-based SMC scheme is illustrated via simulation results. 相似文献
15.
This paper presents the modeling and control of a novel pressure regulation mechanism for the common rail (CR) fuel injection system of internal combustion engines (ICE). The pressure pulsations inside the common rail caused by the incoming and outgoing flows negatively affect the accuracy of both injected fuel quantities and flow rates. The objective of this work is to design a new regulating mechanism to suppress the pressure pulsation in the rail. We first present the one-dimensional distributed model for the common rail developed by using fluid flow equations, which can capture the distributed dynamics of the pressure pulsations in the rail and validating it with a physics based model developed in AMESim®. We then propose the concept of an active fluid storage device like a piezoelectric actuator (PZT) to minimize the pressure fluctuations. The location of the actuator on the common rail has also been evaluated to maximize its effect. The periodic nature of the injection event due to the stroke by stroke engine operation generates pressure pulsations in the rail which are periodic when represented in the rotational angle domain. To leverage this unique dynamic phenomenon we design a time-varying internal model-based controller to compensate the pressure pulsations. 相似文献
16.
This article is concerned with the stabilization problem for nonlinear networked control systems which are represented by polynomial fuzzy models. Two communication features including signal transmission delays and data missing are taken into account in a network environment. To solve the network‐induced communication problems, a novel sampled‐data fuzzy controller is designed to guarantee that the closed‐loop system is asymptotically stable. The stability and stabilization conditions are presented in terms of sum of squares (SOS), which can be numerically solved via SOSTOOLS. Finally, a simulation example is provided to demonstrate the feasibility of the proposed method. © 2014 Wiley Periodicals, Inc. Complexity 21: 74–81, 2015 相似文献
17.
In this article, a fuzzy adaptive control scheme is designed to achieve a function vector synchronization behavior between two identical or different chaotic (or hyperchaotic) systems in the presence of unknown dynamic disturbances and input nonlinearities (dead‐zone and sector nonlinearities). This proposed synchronization scheme can be considered as a generalization of many existing projective synchronization schemes (namely the function projective synchronization, the modified projective synchronization, generalized projective synchronization, and so forth) in the sense that the master and slave outputs are assumed to be some general function vectors. To practically deal with the input nonlinearities, the adaptive fuzzy control system is designed in a variable‐structure framework. The fuzzy systems are used to appropriately approximate the uncertain nonlinear functions. A Lyapunov approach is used to prove the boundedness of all signals of the closed‐loop control system as well as the exponential convergence of the corresponding synchronization errors to an adjustable region. The synchronization between two identical systems (chaotic satellite systems) and two different systems (chaotic Chen and Lü systems) are taken as two illustrative examples to show the effectiveness of the proposed method. © 2015 Wiley Periodicals, Inc. Complexity 21: 234–249, 2016 相似文献
18.
The paper addresses the state feedback linearization problem for nonlinear systems, defined on homogeneous time scale. Necessary and sufficient solvability conditions are given within the algebraic framework of differential one-forms. The conditions concerning the exact dynamic state feedback linearization are equivalent to the property of differential flatness of the system. An output function which defines a right invertible system without zero-dynamics is shown to exist if and only if the basis of some space of one-forms can be transformed, via polynomial matrix operator over the field of meromorphic functions, into a system of exact one-forms. The results extend the corresponding results for the continuous-time case. 相似文献
19.
广义正交表是一种类似于正交表的新设计.它是正交表的推广,可以像正交表一样进行试验设计和数据分析,但试验次数大幅减少.方差分析是统计推断的内容之一,本文从自由模型出发考虑方差分析,采用矩阵象技术,给出了广义正交表方差分析的矩阵计算形式,借助SAS软件可以方便快速的实现. 相似文献
20.
This paper mainly focus on the exponential stabilization problem of coupled systems on networks with mixed time‐varying delays. Periodically intermittent control is used to control the coupled systems on networks with mixed time‐varying delays. Moreover, based on the graph theory and Lyapunov method, two different kinds of stabilization criteria are derived, which are in the form of Lyapunov‐type theorem and coefficients‐type criterion, respectively. These laws reveal that the stability has a close relationship with the topology structure of the networks. In addition, as a subsequent result, a decision theorem is also presented. It is straightforward to show the stability of original system can be determined by that of modified system with added absolute value into the coupling weighted‐value matrix. Finally, the feasibility and validity of the obtained results are demonstrated by several numerical simulation figures. 相似文献
|