首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The exciton-longitudinal optical phonon interaction is theoretically investigated for the case of polar semiconductor cylindrical quantum dots embedded in semiconductor matrix. The theory is developed within the dielectric continuum model considering the Fröhlich interaction between electrons and confined bulk longitudinal optical phonons for a configurational interaction model of quantum dot. Representative longitudinal optical phonon mode for the exciton-phonon interaction is predicted for cylindrical InAs/GaAs quantum dots.  相似文献   

2.
A system of two coupled quantum dots entangled through their interaction with a cavity mode, including Förster and exciton-phonon interactions, exhibits a Josephson-like effect in terms of photon-assisted tunneling current (TC) analogous to supercurrent.  相似文献   

3.
The excitonic nonlinear optical responses due to exciton-phonon interactions in strongly coupled exciton-phonon systems are investigated theoretically. It is shown that the influence of exciton-phonon interactions on the nonlinear optical absorptions and Kerr nonlinear coefficients is significant as the signal field frequency detuning from the exciton frequency approaches to the optical phonon frequency. How to manipulate the nonlinear optical responses by using the control fields is also presented.Received: 16 March 2004, Published online: 4 May 2004PACS: 42.50.Gy Effects of atomic coherence on propagation, absorption, and amplification of light; electromagnetically induced transparency and absorption - 42.50.Hz Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift - 42.25.Bs Wave propagation, transmission and absorption - 72.80.Le Polymers; organic compounds (including organic semiconductors)  相似文献   

4.
A new microscopic approach to the optical transitions in quantum dots and quantum dot molecules, which accounts for both diagonal and nondiagonal exciton-phonon interaction, is developed. The cumulant expansion of the linear polarization is generalized to a multilevel system and is applied to calculation of the full time dependence of the polarization and the absorption spectrum. In particular, the broadening of zero-phonon lines is evaluated directly and discussed in terms of real and virtual phonon-assisted transitions. The influence of Coulomb interaction, tunneling, and structural asymmetry on the exciton dephasing in quantum dot molecules is analyzed.  相似文献   

5.
In this article we study the impact of the spin-orbit interaction on the electron quantum confinement for narrow gap semiconductor quantum dots. The model formulation includes: (1) the effective one-band Hamiltonian approximation; (2) the position- and energy-dependent quasi-particle effective mass approximation; (3) the finite hard wall confinement potential; and (4) the spin-dependent Ben Daniel-Duke boundary conditions. The Hartree-Fock approximation is also utilized for evaluating the characteristics of a two-electron quantum dot system. In our calculation, we describe the spin-orbit interaction which comes from both the spin-dependent boundary conditions and the Rashba term (for two-electron quantum dot system). It can significantly modify the electron energy spectrum for InAs semiconductor quantum dots built in the GaAs matrix. The energy state spin-splitting is strongly dependent on the dot size and reaches an experimentally measurable magnitude for relatively small dots. In addition, we have found the Coulomb interaction and the spin-splitting are suppressed in quantum dots with small height. Received 15 May 2001 / Received in final form 14 May 2002 Published online 13 August 2002  相似文献   

6.
《Current Applied Physics》2018,18(7):829-833
We examine the temperature-dependent excitonic transition energy shift of strain-free GaAs droplet epitaxy (DE) quantum dots (QDs). Interestingly the statistical investigation of QD optical properties enables us to observe three distinct temperature dispersions for four series of DE QDs. We present comparative analyses of the exciton-phonon coupling mechanisms employing various empirical to multi-oscillator models associated with each QD-specific phonon dispersion spectrum. The systematic investigation of such QD exciton-phonon coupling is crucial for fine control of local defects in engineered quantum dot single-photon sources.  相似文献   

7.
A model of resonance interaction of a chain of periodically spaced metal nanoparticles with a chain of quantum dots is developed. The conditions leading to oscillation in a chain of spasers in the vicinity of narrow plasmon resonances are determined. It is shown that the lowest oscillation threshold can be achieved under anomalously small values of population inversion. In this case, the range of oscillation frequency variation upon changing the resonance frequency of quantum dots can be substantially narrower that the plasmon-resonance linewidth.  相似文献   

8.
The continuous spectrum in the problem of resonance optical transitions between bound states of quantum wells is taken into account by the method of equivalence transformation of the initial Hamiltonian. The effective Hamiltonian of resonance interaction, describing the decay of levels to a continuous spectrum, is obtained. The formulas obtained are applied to the problem of resonance electron transfer between quantum dots. The conditions for effective resonance electron transfer are determined.  相似文献   

9.
We study the coherent transport in a one-dimensional lead with two side-coupled quantum dots using the Keldysh’s Green function formalism.The effect of the interdot Coulomb interaction is taken into account by computing the firstand second order contributions to the self-energy.We show that the Fano interference due to the resonance of one dotis strongly affected by the fixed parameters that characterize the second dot. If the second dot is tuned close to resonance an additionalpeak develops between the peak and dip of the Fano line shape of the current. In contrast, when the second dotis off-resonance and its occupation number is close to unity the interdot Coulomb interaction merely shifts the Fano line and no other maxima appear.The system we consider is more general than the single-dot interferometer studied experimentally by Kobayashi et al. [Phys. Rev. B 70, 035319 (2004)] and may be used for controlling quantum interference and studying decoherence effects in mesoscopic transport.  相似文献   

10.
Förster resonance energy transfer in inhomogeneous dense arrays of epitaxial CdSe/ZnSe quantum dots is demonstrated by time- and space-resolved photoluminescence spectroscopy. The specific feature of this process is the dipole–dipole interaction between the ground exciton levels of small quantum dots and the excited levels of large dots. This interaction brings efficient energy collection and spectral selection of a limited number of emitters. Results of theoretical modeling of optical transitions in spheroidal quantum dots with a Gaussian potential profile agree with the observed features of optical spectra induced by the change of the dominant energy transfer mechanism.  相似文献   

11.
Spin-orbit qubit (SOQ) is the dressed spin by the orbital degree of freedom through a strong spin-orbit coupling (SOC). We show that Coulomb interaction between two electrons in quantum dots located separately in two nanowires can efficiently induce quantum entanglement between two SOQs. But to achieve the highest possible value for two SOQs concurrence, strength of SOC and confining potential for the quantum dots should be tuned to an optimal ratio. The physical mechanism to achieve such quantum entanglement is based on the feasibility of the SOQ responding to the external electric field via an intrinsic electric dipole spin resonance.  相似文献   

12.
Bell's inequality for three coupled quantum dots (QDs) within a cavity QED, including Förster and exciton-phonon interactions, is investigated theoretically. For an initially entangled state, Bell's inequality is valid for certain times and violated for some other times. It is shown that the system moves from a product state to an entangled state and back again during its time evolution.  相似文献   

13.
We measure the strength and the sign of hyperfine interaction of a heavy hole with nuclear spins in single self-assembled quantum dots. Our experiments utilize the locking of a quantum dot resonance to an incident laser frequency to generate nuclear spin polarization. By monitoring the resulting Overhauser shift of optical transitions that are split either by electron or exciton Zeeman energy with respect to the locked transition using resonance fluorescence, we find that the ratio of the heavy-hole and electron hyperfine interactions is -0.09 ± 0.02 in three quantum dots. Since hyperfine interactions constitute the principal decoherence source for spin qubits, we expect our results to be important for efforts aimed at using heavy-hole spins in quantum information processing.  相似文献   

14.
Transport through two quantum dots laterally embedded in Aharonov-Bohm interferometry with infinite intradot and arbitrary interdot Coulomb repulsion is analyzed in the weak coupling and Coulomb blockade regime. By employing the modified quantum rate equations and the slave-boson approach, we establish a general dc current formula at temperatures higher than the Kondo temperature for the case that the spin degenerate levels of two dots are close to each other. For further discussion, we examine two simple examples for identical dots - no doubly occupied states and no empty state. In the former, completely destructive coherent transport and phase locking appear at magnetic flux and respectively; in the latter, partially coherent transport exhibits an oscillation with magnetic flux having a period of .Received: 23 July 2003, Published online: 30 January 2004PACS: 73.21.La Quantum dots - 73.23.-b Electronic transport in mesoscopic systems - 73.23.Hk Coulomb blockade and single-electron tunneling.  相似文献   

15.
We propose an implementation of the quantum XOR (controlled-NOT) gate on the basis of coupledasymmetricquantum dots. Results of our numerical simulations show that the coupling constant of the dipole–dipole interaction and the probability of spontaneous emission can be tuned over a wide range by a proper choice of the potential profile, material parameters, and distances between the dots. We argue that the use of the asymmetric potential profile provides better conditions for having the Ising-type interaction between the dots than earlier proposed schemes based on regular symmetric quantum dots biased with an electric field. Our system gives better resolution of different quantum states, avoids any undesirable time evolution of these states, and can be driven with a femtosecond laser. The qubit manipulation and time coherency requirements are also discussed.  相似文献   

16.
The transport properties of a system of two interacting dots, one of them directly connected to the leads constituting a side-coupled configuration (SCD), are studied in the weak and strong tunnel-coupling limits. The conductance behavior of the SCD structure has new and richer physics than the better-studied system of two dots aligned with the leads (ACD). In the weak coupling regime and in the case of one electron per dot, the ACD configuration gives rise to two mostly independent Kondo states. In the SCD topology, the inserted dot is in a Kondo state while the side-connected one presents Coulomb blockade properties. Moreover, the dot spins change their behavior, from an antiferromagnetic coupling to a ferromagnetic correlation, as a consequence of the interaction with the conduction electrons. The system is governed by the Kondo effect related to the dot that is embedded into the leads. The role of the side-connected dot is to introduce, when at resonance, a new path for the electrons to go through giving rise to the interferences responsible for the suppression of the conductance. These results depend on the values of the intra-dot Coulomb interactions. In the case where the many-body interaction is restricted to the side-connected dot, its Kondo correlation is responsible for the scattering of the conduction electrons giving rise to the conductance suppression.Received: 7 February 2004, Published online: 24 September 2004PACS: 73.63.-b Electronic transport in nanoscale materials and structures - 73.63.Kv Quantum dots  相似文献   

17.
We consider non-interacting electrons in asymmetric quantum dots with either hard wall boundary conditions (rectangular quantum dots) or anharmonic confinement (elliptic quantum dots). In both cases, due to finite size effects, a homogeneous electric field applied along the long axis is shown to induce abrupt changes in the electron density, parallel and perpendicular to the field direction. Making use of this property, we propose a pure electrical mechanism to control the magnitude of the effective exchange interaction between two weakly-coupled quantum dots. This kind of system has been proposed recently as possible realization of quantum gates for quantum computation.  相似文献   

18.
CdTe量子点的光谱特性及其应用   总被引:3,自引:0,他引:3  
研究了水相CdTe量子点的共振散射光谱、荧光光谱和吸收光谱特性。结果表明,随着量子点粒径(d)的增大,CdTe量子点的荧光峰(λF)发生红移,吸收峰也发生红移,且吸收峰(λA)的峰形变宽、吸光度(A)降低,λ与ln(d)均存在较好的线性关系。其函数关系为λA =126.74 ln(d)+395.92和λF=155.01 ln(d) +415.5。共振散射光谱研究表明, 共振散射波长λR与CdTe量子点粒径(3.8~8.6 nm)的对数存在较好的线性关系,线性回归方程为λR=148.37 ln(d)+418.08, 相关系数为0.995 2,而且同一粒径的CdTe量子点,共振散射强度与CdTe量子点的浓度也存在良好的线性关系,粒径为3.8 nm的CdTe量子点在波长597 nm处的线性范围,回归方程,相关系数分别为:22.5~180.0 μmol·L-1;I597 nm=0.572 1c+5.884,0.997 5。共振散射光谱法作为检测CdTe量子点粒径的一种新方法,具有简便快速及较好的应用价值。  相似文献   

19.
Semiconductor nanostructures have attracted considerable interest during the recent years in view of the potential application in quantum information processing. In particular, quantum dots have been suggested to fulfill an essential requirement for quantum computation: controllable interaction that couples two quantum dot qubits. Previous experiments on two vertically aligned quantum dots have demonstrated the formation of coupled exciton states. We show that this coupling between two In0.60Ga0.40As/GaAs quantum dots can be tuned by an electric field applied along the molecule axis. This controllable coupling in such a relatively simple configuration could be implemented in a solid-state-based quantum device.  相似文献   

20.
We present an Anderson-type model Hamiltonian with exchange coupling between the localized spins and the confined holes in the quantum dots to study the ferromagnetism in diluted magnetic semiconductor (DMS) quantum dot arrays embedded in semiconductors. The hybridization between the quantum-confined holes in the quantum dots and the itinerant holes in the semiconductor valence band makes possible hole transfer between the DMS quantum dots, which can induce the long range ferromagnetic order of the localized spins. In addition, it makes the carrier spins both in the quantum dots and in the semiconductors polarized. The spontaneous magnetization of the localized spins and the spin polarization of the holes are calculated using both the Weiss mean field approximation and the self-consistent spin wave approximation, which are developed for the present model.Received: 17 Mars 2003, Published online: 30 January 2004PACS: 75.75. + a Magnetic properties of nanostructures - 75.30.Ds Spin waves - 75.50.Dd Nonmetallic ferromagnetic materials - 75.50.Pp Magnetic semiconductors  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号