首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mononuclear [M(hfacac)2(H2biim)] complexes, where M = MnII, FeII, CoII, NiII, CuII or ZnII, hfacac = hexafluoroacetylacetonate, H2biim = 2,2-biimidazole; dinuclear K2[M2(acac)4(-biim)] (M = CuII or ZnII) and tetranuclear K2[M4(acac)8( 4-biim)] (M = CoII or NiII) complexes have been prepared and characterized by chemical analysis, conductance measurements, i.r., electronic and e.p.r. spectroscopies and by magnetic susceptibility measurements (in the 2–300 K range). MnII, FeII and CoII are in a high spin state. The e.p.r. spectra of CuII and MnII compounds have been recorded.  相似文献   

2.
Summary New complexes of 2,2-dipyridyl and 4,4-dipyridyl with thulium salts TmX 3 (whereX=Cl, Br, NO 3 , NCS, and ClO 4 ) have been prepared and their solubilities in water at 21 °C were determined. The IR spectra of these compounds are discussed. The conditions of thermal decomposition of the complexes were also studied.
Synthese und Eigenschaften von 2,2-Dipyridyl- und 4,4-Dipyridylkomplexen mit Thuliumsalzen
Zusammenfassung Es wurden neue 2,2-Dipyridyl- und 4,4-Dipyridyl-Komplexen mit Thuliumsalzen TmX 3 (X=Cl, Br No 3 , NCS, ClO 4 ) dargestellt und ihre Wasserlöslihkeit bei 21 °C bestimmt. Die IR-Spektren werden diskutiert. Das thermische Verhalten der erhaltenen Komplexe wurde untersucht.
  相似文献   

3.
The replacement of the iodide ligands in the complex [PtI2(dpa)] (1) (dpa is 2,2′-dipyridylamine) by silver triflate in acetonitrile afforded the compound [Pt(dpa)(MeCN)2](SO3CF3)2 (2). Homoleptic complexes [Pt(dpa)2](X)2 (3·(X)2) were synthesized by the treatment of [PtI2(dpa)] (1) with 2,2′-dipyridylamine in the presence of silver salts AgX in methanol (X = NO3) or acetonitrile (X = SO3CF3). The deprotonation of the complex [3](SO3CF3)2 to give the homoleptic complex [Pt(dpa-H)2] (4) was performed by two methods, e.g., by the treatment of [3](SO3CF3)2 with 2 equiv. of NaOH in methanol or by the addition of excess Et3N to a suspension of [3](SO3CF3)2 in methanol. The structures of compounds 1–4 were established by elemental analyses, high resolution electrospray ionization mass spectrometry, IR and NMR spectroscopy; the crystal structure of complexes [2](SO3CF3)2, [3](NO3)2·H2O, [3](SO3CF3)2·2H2O, and 4 were determined by single-crystal X-ray diffraction.  相似文献   

4.
《Tetrahedron letters》2017,58(37):3643-3645
A series of glucosylated mono- and di-(1H-1,2,3-triazol-4-yl)pyridines were prepared from glucosyl azides and 2-ethynyl and 2,6-diethynyl pyridine via Click reaction. Glucosylation of the silver salt of 4-hydroxy-2,2′-bipyridine with acetobromoglucose afforded the corresponding glucosylated 2,2′-bipyridine. Treatment of five examples of the latter pyridine ligands with [cis-Ru(bipy)2Cl2], [Ru(tpy)Cl3] or [Pd(COD)Cl2] gave the corresponding ruthenium(II) and palladium(II) complexes in 62%-quantitative yield.  相似文献   

5.
Complexes of 2,2-bipyridine-6,6-bis(carbothioamide), obtained with a variety of metal cations, were characterised by microanalyses, molar conductivities and by i.r. and n.m.r. (for diamagnetic compounds) spectra. The iron(II) complex was also characterised by Mössbauer spectroscopy. The spectral data indicate that, in all cases, the ligand coordinates to the metal through one pyridine nitrogen and one sulphur.  相似文献   

6.
The reactivity of oxorhenium(V) precursors with the potentially N,N-donor ligand 2,2′-dipyridylamine (dpa) has been investigated. Reaction of a two-fold molar excess of dpa with trans-[ReO(OEt)Cl2(PPh3)2] in ethanol led to the isolation of [ReOCl2(OEt)(dpa)] (1). Spectroscopic measurements indicate that dpa is coordinated as a bidentate in the equatorial plane cis to the oxo group, with the ethoxide in the trans position. Treatment of trans-[ReOCl3(PPh3)2] with a tenfold molar excess of dpa in ethanol at reflux yielded the trans-dioxo complex [ReO2(dpa)2]Cl (2), but with a twofold molar excess (μ-O)[{ReOCl2(dpa)}2] (3a) was isolated. The latter reaction with (n-Bu4N)[ReOCl4] as starting material in ethanol at room temperature led to a dark green product, also with the formulation (μ-O)[{ReOCl2(dpa)}2] (3b). These compounds were characterised by common spectroscopic techniques, and the crystal structures of 2·3H2O, 3a and 3b·2DMSO were determined. The structure of 3b presents a nearly linear O=Re–O–Re=O group, with the two [ReOCl2(dpa)] halves of the dimer rotated by 180.0° about the Re–O–Re fragment away from an eclipsed conformation. In 3a, the two halves are only rotated by 61.4°.  相似文献   

7.
cis-[CrIII(phen)2(H2O)2]3+ and cis-[CrIII(bipy)2(H2O)2]3+ (phen = 1,10-phenanthroline and bipy = 2,2-bipyridine) were readily oxidized by either PbO2 or PhIO to form the chromium(V) complexes [CrV(phen)2(O)2]+ and [CrV(bipy)2(O)2]+ respectively, which were characterized by elemental analysis, i.r. and e.s.r. spectroscopy.  相似文献   

8.
Rare earth complexes with 2,2′-biphenyldicarboxylic acid (diphenic acid = H2dpa) were obtained as hydrated precipitates of the general formula Ln2(C14H8O4)3nH2O, where n = 3 for the of Y(III) and Ce(III)–Er(III) and n = 6 for La(III), Tm(III), Yb(III) and Lu(III) complexes. On heating in air atmosphere complexes lose all water molecules in the temperature range 30–210 °C in one step and form anhydrous compounds, which are stable up to 315–370 °C. During further heating they decompose to oxides. The trihydrated compounds are crystalline powders whereas the hexahydrated are amorphous solids. The trihydrated complexes crystallize in the monoclinic (Pr(III) and Ce(III) complexes) and triclinic (Y(III) and Nd(III)–Er(III) complexes) crystal systems.  相似文献   

9.
2,2′-Azobis(5,6-dimethylquinoxaline) was prepared by reacting 5,6-dimethylquinoxalinone-2(1 H)-one oxime with CoCl2. Binuclear cyclopalladated azoquinoxaline complexes were prepared from the corresponding quinoxalin-2(1 H)-one oxime and Pd(OAc)2. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Comparative study of cyclopalladated ethylenediamine complexes of 2,3-diphenylquinoxaline (Hdphqx) [Pd(dphqx)En]ClO4 and 2,2′,3,3′-tetraphenylbiquinoline (H2tphbq) [(PdEn)2(μ-tphbq)](ClO4)2, and the free heterocyclic ligands was performed by means of 1H NMR spectroscopy, electronic absorption and emission spectroscopy, and cyclic voltammetry. It was shown that cyclopalladation gives rise to a long-wave absorption band in the visible spectrum, a batochromic shift of the vibrationally structured phosphorescence band, and an anodic shift of the ligand-centered reduction potential of the complexes com-pared to free ligands.  相似文献   

11.
Two new complexes {[Tb(2-IBA)3 · 2,2′-bipy]2 · C2H5OH} (1) and [Tb(2-ClBA)3 · 2,2′-bipy]2 (2) (2-IBA = 2-iodobenzoate; 2-ClBA = 2-chlorobenzoate; 2,2′-bipy = 2,2′-bipyridine) were prepared and their crystal structures determined by X-ray diffraction. Complex 1 is composed of two types of binuclear molecules, [Tb(2-IBA)3 · 2,2′-bipy]2 (a) and [Tb(2-IBA)3 · 2,2′-bipy]2 (b), and an uncoordinated ethanol molecule. In molecule (a), two Tb3+ ions are linked by four 2-IBA groups, all bidentate-bridging. In molecule (b), two Tb3+ ions are held together by four 2-IBA groups in two coordination modes, bidentate-bridging and chelating-bridging. In the two molecules, each Tb3+ ion is further bonded to one chelating 2-IBA group and one chelating 2,2′-bipy molecule, resulting in coordination numbers of eight for (a) and nine for (b). The structural characteristics of 2 are similar to that of molecule (b) in 1. The two complexes, 1 and 2, both emit strong green fluorescence under ultraviolet light with the 5D47F j (j = 6–3) emission of Tb3+ ion observed.  相似文献   

12.
By the interaction between (Et4N)2[Mo2O2S8] and I2 in DMF with a subsequent addition of 2,2′-bipyridine or 1,10-phenanthroline, new binuclear complexes [Mo2O2S2I2(bipy)2] (1) and [Mo2O2S2I2(phen)2] (2) are obtained. The structure of [Mo2O2S2I2(bipy)2] is determined using single crystal X-ray diffraction. The compounds are characterized by elemental analysis and IR spectra. The [MoO(S2)2(bipy)] complex as a product of oxidative destruction of 1 is isolated and characterized.  相似文献   

13.
New iron(III) and cobalt(III) complexes, [Fe(2,2′-dpdtc)3], [Fe(3,3′-dpdtc)3], [Co(2,2′-dpdtc)3], and [Co(3,3′-dpdtc)3] (dpdtc?=?dipicolyldithiocarbamate) have been synthesized and their molecular structures and spectroscopic properties determined. The 2,2′- and 3,3′-dpdtc ligands have four donors, S, S′, N, and N′. These complexes are insoluble in water, but soluble in acidic solution. Crystal structures of these metal complexes reveal that the central metal ions have MS6 (M?=?Fe and Co) octahedral structures and all dipicolyl groups do not coordinate.  相似文献   

14.
The Raman and IR spectra of 2,2′-diphenyl ethyl alcohol and 2,2′-diphenyl ethylamine have been analyzed assuming the phenyl rings vibrate independently. Complete vibrational assignment show that some ring modes for both the molecules are found to appear in pairs. Possible orientation of the two rings with respect to the tetragonally hybridized carbon atom has been discussed. Two probable cases of Fermi resonance have been observed. The general nature of the ring modes to exhibit a pair of frequencies in some diphenyl-type molecules has been described.  相似文献   

15.
The palladium(II) acetate complex of the chelating ligand 2,2′-dipyridylmethane supported on polystyrene-2% divinylbenzene is an efficient catalyst for hydrogenation of alkenes and alkynes. Cyclopentadiene can be reduced with high selectivity to cyclopentene, but no selectivity is observed for the non-conjugated diene 1,5-cyclooctadiene. In the hydrogenation of 3-methylcyclohex-2-en-1-ol only small amounts of ketone are formed as a by-product, in contrast to the reaction catalysed by palladium on charcoal. Nickel(II) complexes of the same ligand catalyze the trimerization of butadiene to 1,5,9-cyclododecatrienes.  相似文献   

16.
The 1H NMR, electronic absorption, and luminescence spectra, as well as voltammograms of the reduction and oxidation of the complexes [Pd(C∧N)(N∧N)]ClO4 and [Pd(C∧N)(μ-OOCCH3)]2 [where (C∧N) is deprotonated 2-phenyl-4,5-dihydro-1,3-oxazole, and N∧N is ethylenediamine or 2,2′-bipyridine (bpy)] were compared. Magnetic nonequivalence of protons in the dihydrooxazole ring and upfield shift of the corresponding signals were observed as a result of anisotropic effect of the ring current in palladated phenyl substituents in the [Pd(C∧N)(μ-OOCCH3)]2 complex having a C 2 symmetry. One-electron reduction wave of [Pd(C∧N)bpy]+ was assigned to ligand-centered electron transfer to the π* orbital of 2,2′-bipyridine, and two oxidation waves of [Pd(C∧N)(μ-OOCCH3)]2 were attributed to successive one-electron oxidations of the palladium centers. Low-temperature (77 K) phosphorescence of [Pd(C∧N)En]+ and [Pd(C∧N)bpy]+ was ascribed to optical transition localized on the metal-complex fragment {Pd(C∧N)} and to interligand charge transfer between the chelating and cyclopalladated ligands. The formation of metal-metal bond in the complex [Pd(C∧N)(μ-OOCCH3)]2 gives rise to radiative decay of photoexcitation energy from two electronically excited states, one of which is localized on the {Pd(C∧N)} fragment, and the second corresponds to the charge transfer metal-metal-cyclopalladated ligand.  相似文献   

17.
Reactions of the ligand precursors 2-(2′-pyridyl)-3,5-Me2-pyrrole ( L 1 H) and 2-(2-pyridyl)-3,4,5-Me3-pyrrole ( L 2 H) with [(Me3Si)2N]3RE(μ-Cl)Li(THF)3 in toluene afforded a series of low-coordinated rare-earth metal bis-amido complexes L 1 RE[N(SiMe3)2]2 [RE = Y ( 1a ), Dy ( 1b ), Er ( 1c ), Yb ( 1d )] and L 2 RE[N(SiMe3)2]2 [RE = Y ( 2a ), Dy ( 2b ), Er ( 2c ), Yb ( 2d )]. With the ionic radius of rare-earth metal increasing, the reaction of L 1 H and [(Me3Si)2N]3RE(μ-Cl)Li(THF)3 gave dinuclear complexes ( L 1 )2RE(μ-Cl)(μ-η5:η1:η1- L 1 )RE( L 1 )[N(SiMe3)2]2 [RE = Sm ( 1e ), Pr ( 1f )]; however, the reaction of L 2 H and [(Me3Si)2N]3Sm(μ-Cl)Li(THF)3 afforded ( L 2 )2Sm[N(SiMe3)2]2 ( 2e ). Results indicated that the ionic radius of rare-earth metal and subtle change in the ligands have substantial effects on the structure and bonding mode of complexes. The complexes showed a high catalytic activity for the ring-opening reaction of cyclohexene oxide with amines to afford various β-aminoalcohols under mild solvent-free conditions.  相似文献   

18.
A reinvestigation of the photolysis of [Ru(bipy)3](NCSe)2 in ethanol under dinitrogen has failed to give the previously reported [Ru(N3)2bipy2] but, under appropriate conditions, may yield the complex [Ru(NCO)2bipy2].  相似文献   

19.
《Polyhedron》1987,6(6):1427-1431
Mono- and dinuclear rhodium(I) complexes of formulae [Rh(L2)(bipym)]+ and [{Rh(L2)}2(μ-bipym)]2+ [L2 = diolefin or (CO)2] have been prepared and their catalytic activity in hydrogen-transfer reactions explored. The heterodinuclear [Cl2Pd(μ-bipym)Rh(tfb)]ClO4 complex was obtained by reacting [Rh(tfb)(bipym)]+ with [PdCl2(cod)] or alternatively from [Rh(tfb)(acetone)x]+ with [PdCl2(bipym)]. Ion-pair complexes of formulae [Rh(diolefin)(bipym)]+ [RhCl2(diolefin)] (diolefin = cod, nbd or tfb) were prepared by adding bipym to acetone suspensions of [RhCl(diolefin)]2.  相似文献   

20.
The binuclear complexes [(UO2bipy)2L1–3]NO3, (1–3), {H3L1–3=1-(2-hydroxybenzoyl)-2-(2-hydroxy-benzal/3-methoxybenzal/naphthal)hydrazine}, and [(UO2bipy)2L4–5](AcO)2, (4–5), [H2L4–5 = 1-(2-aminobenzoyl)-2-(2-hydroxy-benzal/naphthal)hydrazine], have been synthesised. Complexes (4–5) possess longer O=U=O bonds than those in the complexes (1–3) as the strong -donating phenolate is replaced by the amino group. The spectral data and electrochemical behaviour confirm the electronic nonequivalence of the coordination environments around the two uranyl ions in these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号