首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cu2+ selective PVC membrane electrode based on new Schiff base 2, 2'-[1,9 nonanediyl bis (nitriloethylidyne)]-bis-(1-naphthol) as a selective carrier was constructed. The electrode exhibited a linear potential response within the activity range of 1.0 x 10(-6) - 5.0 x 10(-3) moll(-1) with a Nernstian slope of 29 +/- 1 mV decade(-1) of Cu2+ activity and a limit of detection 8.0 x 10(-7) mol l(-1). The response time of the electrode was fast, 10 s, and stable potentials were obtained within the pH range of 3.5- 6.5. The potentiometric selectivity coefficients were evaluated using two solution method and revealed no important interferences except for Ag+ ion. The proposed electrode was applied as an indicator electrode to potentiometric titration of Cu2+ ions and determination of Cu2+ content in real samples such as black tea leaves and multivitamin capsule.  相似文献   

2.
The performance of octahydroxycalix[4]arene derivative used as a neutral carrier for silver polymeric membrane electrode was studied. The sensor gave a good Nernstian response of 58 +/- 1 mV per decade for silver ion in the activity range 3.3 x 10(-6) to 3.3 x 10(-2) M Ag+. The limit of detection reached 2.1 x 10(-6) M Ag+ and exhibited high selectivity for silver ion against the alkali, alkaline earth and transition metal ions. The sensor can be used in wide pH range from 1.5 to 6.5. The response time of the sensor is less than 20 s. The potentiometric sensor was used as the indicator electrode in the titration of Ag+ ions by sodium chloride solution.  相似文献   

3.
A highly selective PVC membrane electrode based on a cerium-salen complex was prepared. The sensor displays an anti-Hofmeister selectivity sequence with a preference for iodide ion over many common organic and inorganic anions. The proposed electrode exhibits a near-Nernstian behavior over a wide concentration range (5.0 x 10(-2) - 8.0 x 10(-6) M) with a slope of 57.5 mV per decade, and a detection limit of 6.0 x 10(-6) M. The electrode has a very fast response time and can be used in the pH range of 3.0 - 1 1.0. It was applied, as an indicator electrode, in potentiometric titration of Ag+ ions.  相似文献   

4.
A highly selective poly(vinyl chloride) (PVC) membrane electrode based on an N,N'-ethylene-bis(4-methyl-salicylidineiminato) nickel(II) [Ni(EBMSI)] complex as a carrier for a thiocyanate-selective electrode is reported. The influences of the membrane composition, pH and possible interfering anions were investigated based on the response properties of the electrode. The electrode exhibited a good Nernstian slope of -58.9 +/- 0.7 mV decade(-1), over a wide pH range of 3.5 - 8.5 and a linear range of 1.0 x 10(-6) - 1.0 x 10(-1) M for thiocyanate. The detection limit of electrode was 3.1 x 10(-7) M SCN(-). The selectivity coefficients determined by a fixed interference method (FIM) indicate that a good discriminating ability towards the SCN- ion compared to other anions. The proposed sensor had a fast response time of about 5 - 15 s and could be used for at least 3 months without any considerable divergence in the potential. It was applied as an indicator electrode in the titration of thiocyanate with Ag+ and in the potentiometric determination of thiocyanate in saliva and urine samples.  相似文献   

5.
A new, simple, sensitive, low cost and rapid potentiometric method for direct determination of ultra trace amounts of sodium dodecyl sulfate (SDS) with a new DS(-)-selective electrode is reported. The electrode was prepared by electropolymerization of aniline in acidified DS- ion on the surface of a Pt electrode. The cyclic voltammetry (CV) was used for electropolymerization of polyaniline (PA) in the potential range of -200 to +1000 mV vs. Ag/AgCl. This sensor showed a Nernstian behavior (59.0 +/- 2.3 mV/decade) over a very wide linear range (1.0 x 10(-9)-3.0 x 10(-6) M) with a detection limit of 1.0 x 10(-9) M. The response time of the electrode was 15 s for 1.0 x 10(-7) M of analyte; the electrode can be used for 4 weeks without any major deviation. This electrode can be used in the pH range of 3.5-9.8. The selectivity of electrode to DS- over some organic, inorganic and anionic surfactants was investigated with the fixed primary ion method. The results show that the electrode is highly selective to DS- ion over other ions. The proposed electrode was applied to the determination of DS- in real samples.  相似文献   

6.
A cobalt(II) derivative was used as a suitable ionophore for the preparation of a polymeric membrane nitrite-selective electrode. The electrode reveals a Nemstian behavior over a very wide NO2- ion concentration range (1.0 x 10(-6)-1.0 x 10(-1) M) and a very low detection limit (5.0 x 10(-7) M). The potentiometric response is independent of the pH of solution in the pH range 4.0-9.5. The electrode shows advantages such as low resistance, fast response and, most importantly, good selectivity relative to a wide variety of inorganic and organic anions. In fact, the selectivity behavior of the proposed NO2- ion-selective electrode shows great improvements compared to the previously reported electrodes for nitrite ion. The proposed electrodes could be used for at least 2 months without any significant changes in potentials. The electrode was successfully applied to the determination of nitrate ion concentrations in sausage and milk samples.  相似文献   

7.
A silver ion-selective electrode was prepared with a polymeric membrane incorporating 2,6-bis-methylsulfanyl-[1,3,5]thiadiazine-4-thione as an ionophore, tri-n-butylphosphate (TBP) as a plasticizer and sodium tetraphenylborate (NaTPB) as an additive. The electrode exhibited a near-Nernstian response of 52 mV/decade over a wide linear concentration range of 1.0 x 10(-5) - 1.0 x 10(-1) M with a lower detection limit of 9.77 x 10(-6) M. The electrode exhibited excellent selectivity for silver ion over many of the alkali, alkaline-earth and transition metal ions. The electrode worked well over a wide pH range of 1.77 - 7.13. The response time of the electrode was less than 20 s. The sensor can be applied as indicator electrode for the potentiometric titration of Ag+ ions with Cl- ions.  相似文献   

8.
A PVC membrane incorporating p-tert-butyl calix[4]crown with imine units as an ionophore was prepared and used in an ion-selective electrode for the determination of mercury(II) ions. An electrode based on this ionophore showed a good potentiometric response for mercury(II) ions over a wide concentration range of 5.0 x 10(-5) - 1.0 x 10(-1) M with a near-Nernstian slope of 27.3 mV per decade. The detection limit of the electrode was 2.24 x 10(-5) M and the electrode worked well in the pH range of 1.3 - 4.0. The electrode showed a short response time of less than 20 s. The electrode also showed better selectivity for mercury(II) ions over many of the alkali (Na+, -1.69; K+, -1.54), alkaline-earth (Ca2+, -3.30; Ba2+, -3.32), and heavy metal ions (Co2+, -3.67; Ni2+, -3.43; Pb2+, -3.31; Fe3+, -1.82). Ag+ ion was found to be the strongest interfering ion. Also, sharp end points were obtained when the sensor was used as an indicator electrode for the potentiometric titration of mercury(II) ions with iodide and dichromate ions.  相似文献   

9.
A coated-wire ion-selective electrode (CWISE), based on a Schiff base as a neutral carrier, was successfully developed for the detection of Pb(II) in aqueous solution. CWISE exhibited a linear response with a Nernstian slope of 29.4 +/- 0.5 mV/decade within the concentration range of 1.0 x 10(-5) - 1.0 x 10(-1) M lead ion. CWISE has shown detection limits of 5.0 x 10(-6) M. The electrode exhibited good selectivity over a number of alkali, alkaline earth, transition and heavy metal ions. This sensor yielded a steady potential within 10 to 20 s at a linear dynamic range. The electrode was suitable for use in aqueous solutions in a pH range of 2.0 to 5.0. Applications of this electrode for the determination of lead in real samples and as indicator electrode for potentiometric titration of Pb2+ ion using K2CrO4 are reported.  相似文献   

10.
A PVC-membrane electrode based on a recently synthesized 18-membered macrocyclic diamide is presented. The electrode reveals a Nernstian potentiometric response for Co2+ over a wide concentration range (2.0 x 10(-6)-1.0 x 10(-2) M). The electrode has a response time of about 10 s and can be used for at least 2 months without any divergence. The proposed sensor revealed very good selectivities for Co2+ over a wide variety of other metal ions, and could be used over a wide pH range (3.0-8.0). The detection limit of the sensor is 6.0 x 10(-7) M. It was successfully applied to the direct determination and potentiometric titration of cobalt ion.  相似文献   

11.
Masadome T  Asano Y  Nakamura T 《Talanta》1999,50(3):595-600
A potentiometric flow injection determination method for bromide ion in a developer was proposed, by utilizing a flow-through type bromide ion-selective electrode detector. The sensing membrane of the electrode was Ag(2)S-AgBr membrane. The response of the electrode detector as a peak-shape signal was obtained for injected bromide ion in a developer. A linear relationship was found to exist between peak height and the concentration of the bromide ion in a developer in a concentration range from 1.0x10(-3) to 1.0x10(-2) mol l(-1). The relative standard deviation for 10 injections of a 6x10(-3) mol l(-1) bromide ion in a developer was 1.3% and the sampling rate was ca 17-20 samples h(-1). The present method was free from the interference of an organic reducing reagent, an organic substance in a developer sample solution for the determination of bromide ion in a developer.  相似文献   

12.
[5,10,15,20-Tetrakis(4-N,N-dimethylaminobenzene)porphyrinato]Mn(III) acetate (MnTDPAc) was applied as an ionophore for an iodide-selective PVC membrane electrode. The influences of the membrane composition, pH of the test solution and foreign ions on the electrode performance were investigated. The sensor exhibited not only excellent selectivity to iodide ion compared to Cl- and lipophilic anions such as ClO4- and salicylate, but also a Nernstian response with a slope of -59.4 +/- 1.2 mV per decade for iodide ions over a wide concentration range from 1.0 x 10(-2) to 7.5 x 10(-6) M at 25 degrees C. The potentiometric response was independent of the pH of the solution in the pH range of 2 - 8. The electrode could be used for at least 2 months without any considerable divergence in the potential. Good selectivity for iodide ion, a very short response time, simple preparation and relatively long-term stability were the silent characteristics of this electrode. It was successfully used as an indicator electrode in the potentiometric titration of iodide ions, and also in the determination of iodide from seawater samples and drug formulations.  相似文献   

13.
A PVC-based membrane electrode for lead ions based on hexathia-18-crown-6-tetraone as membrane carrier was prepared. The influence of membrane composition, pH of test solution and foreign ions on the electrode performance were investigated. The electrode showed a Nernstian response over a lead concentration range from 1.0 x 10(-6) to 8.0 x 10(-3) M at 25 degrees C, and was found to be very selective, precise and usable within the pH range 3.0-6.0. The electrode was successfully used as an indicator electrode in potentiometric titration of lead ions and in direct determination of lead in water samples.  相似文献   

14.
The potentiometric response characteristics of cesium ion selective PVC membrane electrode employing calix[4]crown ether-ester as an ionophore were investigated. The electrode exhibit a good response for cesium ion over wide concentration range of 5.0x10(-6)-1.0x10(-1) M with a Nernstian slope of 59 mV per decade. The detection limit of electrode is 5.0x10(-6) M. The electrode was found to have selectivity for cesium ion over alkali, alkaline and transition metals. The response time of the electrode is less than 20 s and can be used for more than 4 months without observing any divergence in potentiometric response. The electrode response was stable over wide pH range.  相似文献   

15.
A new PVC membrane electrode for the triiodide ion based on a charge-transfer complex of iodine with 7,16-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as a membrane carrier was prepared. The electrode exhibits a Nernstian response for triiodide ions over a wide concentration range (1.0 x 10(-1)-1.0 x 10(-5) M) with a slope of 59.3 +/- 0.9 mV decade(-1) and a detection limit of 6.3 x 10(-6) M. It has a response time of 30 s and can be used for at least 3 months without any divergence in the potential. The potentiometric response is independent of the pH, in the pH range 1.6 - 10.0. The proposed electrode has shown very high selectivity for the triiodide ion over a wide variety of other anions. This electrode was successfully applied as an indicator electrode in the potentiometric titration of ascorbic acid and hydroquinone from pharmaceutical preparations as well as ascorbic acid in orange juice and dissolved O2 in tap water.  相似文献   

16.
New ranitidine hydrochloride (RaCl)-selective electrodes of the conventional polymer membrane type are described. They are based on incorporation of ranitidine-tetraphenylborate (Ra-TPB) ion-pair or ranitidine-phosphotungstate (RaPT) ion-associate in a poly(vinyl chloride) (PVC) membrane plasticized with dioctylphthalate (DOP) or dibutylphthalate (DBP). The electrodes are fully characterized in terms of the membrane composition, solution temperature, and pH. The sensors showed fast and stable responses. Nernstian response was found over the concentration range of 2.0 x 10(-5) M to 1.0 x 10(-2) M and 1.0 x 10(-5) M to 1.0 x 10(-2) M in the case of Ra-TPB electrode and over the range of 1.03 x 10(-5) M to 1.00 x 10(-2) M and 1.0 x 10(-5) M to 1.0 x 10(-2) M in the case of Ra-PT electrode for batch and FIA systems, respectively. The electrodes exhibit good selectivity for RaCl with respect to a large number of common ions, sugars, amino acids, and components other than ranitidine hydrochloride of the investigated mixed drugs. The electrodes have been applied to the potentiometric determination of RaCl in pure solutions and in pharmaceutical preparations under batch and flow injection conditions with a lower detection limit of 1.26 x 10(-5) M and 5.62 x 10(-6) M at 25 +/- 1 degrees C. An average recovery of 100.91% and 100.42% with a relative standard deviation of 0.72% and 0.53% has been achieved.  相似文献   

17.
A plasticized Cr3+ ion sensor by incorporating 2,3,8,9-tetraphenyl-1,4,7,10-tetraazacyclododeca-1,3,7,9-tetraene (TTCT) ionophore exhibits a good potentiometric response for Cr3+ over a wide concentration range (1.0 x 10(-6)-1.0 x 10(-1) M) with a slope of 19.5 mV per decade. The sensor response is stable for at least three months. Good selectivity for Cr3+ in comparison with alkali, alkaline earth, transition and heavy metal ions, and minimal interference are caused by Li+, Na+, K+, Co2+, Hg2+, Ca2+, Pb2+ and Zn2+ ions, which are known to interfere with other chromium membrane sensors. The TTCT-based electrode shows a fast response time (15 s), and can be used in aqueous solutions of pH 3-5.5. The proposed sensor was used for the potentiometric titration of Cr3+ with EDTA and for a direct potentiometric determination of Cr3+ content in environmental samples.  相似文献   

18.
A sulfate ion-selective PVC membrane sensor based on 4-(4-bromophenyl)-2,6-diphenylpyrilium perchlorate (BDPP) as a novel sensing material is successfully developed. The electrode shows a good selectivity for sulfate ion with respect to common organic and inorganic anions. The sensor exhibits a good linear response with slope of -28.9+/-0.5 mV per decade over the concentration range of 1.0x10(-6)-1.0x10(-2) M, and a detection limit of 8.0x10(-7) M of SO(4)(2-) ions. The electrode response is independent of pH in the range of 4.0-9.0. The proposed sensor was applied as an indicator electrode in potentiometric titration of sulfate and barium ions, and to the determination of zinc in zinc sulfate tablets.  相似文献   

19.
The complexation of five recently synthesized hydroxy-thioxanthone derivatives with Al3+ ion was studied in a methanol solution spectrophotometrically, and the stepwise formation constants of the resulting 1:1 and 2:1 (ligand-to-metal) complexes were evaluated. The suitability of the thioxanthone derivatives as neutral ionophores for the preparation of a new Al3+ ion-selective PVC-membrane electrode was investigated, and 1-hydroxy-3-methyl-thiocanthone was selected as the best compound for this purpose. The prepared electrode exhibits a Nernstian response for Al3+ ions over a wide concentration range (2.0 x 10(-2) to 2.0 x 10(-6) M), with a limit of detection of 1.0 x 10(-6) M. It has a very fast response time of about 5 s and can be used for at least 3 months without any considerable divergence in the potentials. The proposed membrane sensor revealed very good selectivities for Al3+ over a wide variety of other metal ions, and could be used at a working pH range of 3.4 - 5.0. It was used as an indicator electrode in potentiometric titration of aluminum ions with EDTA, and in the determination of Al3+ in different real samples.  相似文献   

20.
A novel triiodide ion-selective electrode based on a clotrimazole-triiodide ion pair as a membrane carrier was prepared. It has a linear response to triiodide from 8 x 10(-6) to 5 x 10(-3) M with a slope of -68.9 mV per decade and a detection limit of 5 x 10(-6) M. The electrode response is independent of the pH of the solution in the pH range 2-9. It has a very short response time and can be used for at least 3 months without any considerable divergence in the potentials. The proposed sensor revealed very good selectivities for I3- over a variety of other anions. It was used as an indicator electrode in the potentiometric titration of triiodide ions and in an indirect potentiometric determination of clotrimazole in pharmaceutical preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号