首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Colloidal dispersions of Pt/Rh bimetallic particles have been synthesized by the reduction of Pt(IV)/Rh(III) ionic solutions by using borohydride-reduction in the presence of poly(N-vinyl-2-pyrrolidone). The size and the structure of the synthesized particles have been examined by transmission electron micrograph (TEM) and extended X-ray absorption fine structure (EXAFS). We have succeeded in producing the bimetallic Pt/Rh particles with an average diameter of 2.8 nm in polymer solutions by the stepwise addition of sodium borohydride aqueous solution. The distribution of different metallic species in a particle tended to be "cluster-in-cluster" structure, in contrast to the bimetallic particle with an average diameter of 1.4 nm synthesized by alcohol-reduction which have a core-shell structure.  相似文献   

2.
Colloidal bimetallic nanoparticles of Pt-Ru have been synthesized by sonochemical reduction of Pt(II) and Ru(III) in aqueous solutions. Transmission electron microscope (TEM) images indicate that sequential reduction of the Pt(II) followed by the Ru(III) produces particles with a core shell (Pt@Ru) morphology. In the presence of sodium dodecyl sulfate, SDS, as a stabilizer, the particles have diameters between 5 and 10 nm. When polyvinyl-2-pyrrolidone, PVP, is used as the stabilizer, the rate of reduction is much faster, giving ultrasmall bimetallic particles of approximately 5 nm diameter.  相似文献   

3.
A high-temperature and high-pressure flow-reactor system was applied to the synthesis of monometallic ruthenium (Ru) nanoparticles and platinum/ruthenium (Pt/Ru) bimetallic nanoparticles using the thermal reduction of ruthenium ion (Ru(III)) and the mixture of platinum (Pt(IV)) and ruthenium ions in water and ethanol mixture in the presence of poly(N-vinyl-2-pyrrolidone). Monometallic Ru nanoparticles with an average diameter of ca. 2 nm were synthesized above 200 degrees C at 30 MPa. The monometallic Ru nanoparticles tended to make large aggregates in colloidal dispersions. By the reduction of the mixture solution of Pt(IV) and Ru(III) in water and ethanol above 200 degrees C at 30 MPa, Pt/Ru bimetallic nanoparticles with an average diameter of ca. 2.5 nm were synthesized with relatively small size distribution. The EXAFS spectra for the Pt/Ru bimetallic particles indicated that the particle possesses metallic bonds between Pt and Ru atoms in contrast to the case of the nanoparticles produced by thermal reduction under ambient pressure at 100 degrees C [M. Harada, N. Toshima, K. Yoshida, S. Isoda, J. Colloid Interface Sci. 283 (2005) 64], and that the Pt/Ru bimetallic particle has a Pt-core/Ru-shell structure.  相似文献   

4.
Formation mechanisms of metal particles (gold (Au) particles) in an aqueous ethanol solution of HAuCl4 with poly(N-vinyl-2-pyrrolidone) (PVP) by the photoreduction method were investigated by UV-vis, transmission electron microscopy (TEM), and in situ and ex situ X-ray absorption fine structure (XAFS) analysis. The average diameters of the dilute and concentrated Au particles in PVP solution are estimated from TEM to be 106 A and 925 A, respectively. XAFS analysis was carried out to elucidate the reduction process of AuCl4- ionic species to metallic Au particles for the Au-L3 edge of the colloidal dispersions of the concentrated Au solutions. In the photoreduction process, the reduction of AuCl2- species to Au0 atoms is a slower process than that of AuCl4- to AuCl2-, and the reduction of AuCl2- to Au0 atoms and the association of Au0 atoms to form seed Au particles (particle diameter between 5.5 and 30 A) concurrently proceeds in the short-duration photoirradiation. In addition, in the long-duration photoirradiation, the slow progression of Au particle growth occurs with the association of Au0-Au0 metallic bonds, resulting in the formation of larger Au particles (particle diameter larger than 500 A).  相似文献   

5.
The chemical state and formation mechanism of Pt-Ru nanoparticles (NPs) synthesized by using ethylene glycol (EG) as a reducing agent and their stability have been examined by in situ X-ray absorption spectroscopy (XAS) at the Pt LIII and Ru K edges. It appears that the reduction of Pt(IV) and Ru(III) precursor salts by EG is not a straightforward reaction but involves different intermediate steps. The pH control of the reaction mixture containing Pt(IV) and Ru(III) precursor salts in EG to 11 led to the reduction of Pt(IV) to Pt(II) corresponding to [PtCl4](2-) whereas Ru(III)Cl3 is changed to the [Ru(OH)6](3-) species. Refluxing the mixture containing [PtCl4](2-) and [Ru(OH)6](3-) species at 160 degrees C for 0.5 h produces Pt-Ru NPs as indicated by the presence of Pt and Ru in the first coordination shell of the respective metals. No change in XAS structural parameters is found when the reaction time is further increased, indicating that the Pt-Ru NPs formed are extremely stable and less prone to aggregation. XAS structural parameters suggest a Pt-rich core and a Ru-rich shell structure for the final Pt-Ru NPs. Due to the inherent advantages of the EG reduction method, the atomic distribution and alloying extent of Pt and Ru in the Pt-Ru NPs synthesized by the EG method are higher than those of the Pt-Ru/C NPs synthesized by a modified Watanabe method.  相似文献   

6.
Polymer-protected platinum/ruthenium colloidal dispersions were prepared by refluxing mixed solutions of hexachloroplatinic(IV) acid and ruthenium(III) chloride in a mixture of ethanol/water (1/1 v/v) in the presence of poly(N-vinyl-2-pyrrolidone). The electronic spectra and transmission electron micrographs suggested that the colloidal dispersions are almost composed of the mixture of the small monometallic Pt and Ru clusters over all the ratio of Pt/Ru compositions. Extended X-ray absorption fine structure analyses and high resolution electron microprobe analyses indicated that no Pt/Ru alloy clusters exist in the dispersions, and the aggregation occurs between small monometallic Pt clusters (diameter ca. 15 A) and partially oxidized Ru microclusters (diameter less than 10 A). Electron diffraction measurements also suggested that the diffraction pattern of aggregated Pt/Ru cluster particles prepared by the simultaneous reduction of Pt and Ru ions is the same as that of the physical mixture of the small monometallic Pt and Ru clusters separately prepared. Therefore, it can be concluded that the aggregated Pt/Ru cluster particles, with 10 to 60 A in diameter, are built up by small monometallic Pt clusters and partially oxidized Ru microclusters, and that Pt/Ru alloy clusters are not formed.  相似文献   

7.
Kinetics of Ru(III) catalysed oxidation of n-propanol and n-butanol by acidic solutions of bromamine-T have been investigated. The results show that oxidation of both alcohols follows first-order kinetics in bromamine-T, both alchols, hydrogen ion concentration and Ru(III). Decreasing effect of chloride ion]variation on reaction was observed. No effect of p-toluensulphonamide and ionic strength of the medium was observed. Activation parameters have been calculated and recorded. A suitable mechanism in conformity with the above observations has been proposed.  相似文献   

8.
New dinuclear asymmetric ruthenium complexes of the type [(bpy)(2)Ru(5-CNphen)Ru(NH(3))(5)](4+/5+) (bpy = 2,2'-bipyridine; 5-CNphen = 5-cyano-1,10-phenanthroline) have been synthesized and characterized by spectroscopic, electrochemical, and photophysical techniques. The structure of the cation [(bpy)(2)Ru(5-CNphen)Ru(NH(3))(5)](4+) has been determined by X-ray diffraction. The mononuclear precursor [Ru(bpy)(2)(5-CNphen)](2+) has also been prepared and studied; while its properties as a photosensitizer are similar to those of [Ru(bpy)(3)](2+), its luminescence at room temperature is quenched by a factor of 5 in the mixed-valent species [(bpy)(2)Ru(II)(5-CNphen)Ru(III)(NH(3))(5)](5+), pointing to the occurrence of intramolecular electron-transfer processes that follow light excitation. From spectral data for the metal-to-metal charge-transfer transition Ru(II) --> Ru(III) in this latter complex, a slight electronic interaction (H(AB) = 190 cm(-1)) is disclosed between both metallic centers through the bridging 5-CNphen.  相似文献   

9.
Colloidal dispersions of rhodium (Rh) nanoparticles have been synthesized by the reduction of Rh ions (III) in high-temperature and high-pressure water, ethanol, or water-ethanol mixture under the existence of the protective polymer of poly(N-vinyl-2-pyrrolidone). The possibility of the regulation of the particle size and size distribution has been tested under several solvents at various temperatures and pressures. At 473 K and 25 MPa, particularly, concentrated colloidal dispersions of Rh particles of 2.5+/-0.5 nm were synthesized from the ionic solution of ethanol ([Rh]=15 mM) within a few seconds. Dilute colloidal dispersions of Rh particles were also synthesized from the dilute ionic solution ([Rh]=1.5 mM) with a diameter of 2.0+/-0.4 nm. From the water solution, Rh particles tended to form aggregates, especially for the lower concentration solution. In the case of solutions in water and ethanol mixture, the average diameter of Rh particles tended to be larger than in ethanol solution, and their distribution became broad.  相似文献   

10.
The aim of this work is to investigate extraction of ruthenium(III) from acidic aqueous solutions with phosphonium ionic liquids such as trihexyl(tetradecyl)phosphonium chloride (Cyphos IL 101), trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate (Cyphos IL 104) and tributyl(tetradecyl)phosphonium chloride (Cyphos IL 167) as extractants. The influence of HCl content in the feed solutions on extraction of Ru(III) was investigated. The research was performed for model solutions containing Ru(III) and a mixture of waste solutions containing Ru(III) and Rh(III). In addition, investigation of the type of extractant and its concentration in the organic phase on extraction of Ru(III) was carried out. Co-extraction of protons to the organic phase was determined. To the best of our knowledge, the extraction of Ru(III) with Cyphos IL 167 (tributyl(tetradecyl)phosphonium chloride) as an extractant has not yet been described in the scientific literature.  相似文献   

11.
邱星屏 《中国化学》2000,18(6):834-837
Magnetic nanoparticles with average diameter in the range of 6.4-8.3 nni have been synthesized by a chemical co-precipitation of Fe(Ⅱ)and Fe(Ⅲ)salts in 1.5 M NH4OH solution.The size of the magnetic particles is dependent on both temperature and the ionic strength of the iron ion solutions.The magnetic particles formed at higher temperature or lower ionic strength were slightly larger than those formed at lower temperature or higher ionic strength respectively.In spite of the different reaction conditions,all the resultant nanoparticles are nearly spherical and have a similar crystalline structure.At 300 K,such prepared nanoparticles are superparam-agnetic.The saturation magnetizations for 7.8 and 6.4 nm particles are 71 and 63 emu/g respectively,which are only ~ 20-30% less than the saturation magnetization(90 emu/g)of bulk Fe3O4 Our results indicated that a control of the reaction conditions could be used to tailor the size of magnetic nanoparticles in free precipitation.  相似文献   

12.
Areneruthenium(II) molecular complexes of the formula [Ru(arene)(Q)Cl], containing diverse 4-acyl-5-pyrazolonate ligands Q with arene = cymene or benzene, have been synthesized by the interaction of HQ and [Ru(arene)Cl(micro-Cl)]2 dimers in methanol in the presence of sodium methoxide. The dinuclear compound [{Ru(cymene)Cl}2Q4Q] (H2Q4Q = bis(4-(1-phenyl-3-methyl-5-pyrazolone)dioxohexane), existing in the RRuSRu (meso form), has been prepared similarly. [Ru(cymene)(Q)Cl] reacts with sodium azide in acetone, affording [Ru(cymene)(Q)N3] derivatives, where Cl- has been replaced by N3-. The reactivity of [Ru(cymene)(Q)Cl] has also been explored toward monodentate donor ligands L (L = triphenylphosphine, 1-methylimidazole, or 1-methyl-2-mercaptoimidazole) and exo-bidentate ditopic donor ligands L-L (L-L = 4,4'-bipyridine or bis(diphenylphosphino)propane) in the presence of silver salts AgX (X = SO3CF3 or ClO4), new ionic mononuclear complexes of the formula [Ru(cymene)(Q)L]X, and ionic dinuclear complexes of the formula [{Ru(cymene)(Q)}2L-L]X2 being obtained. The solid-state structures of a number of complexes were confirmed by X-ray crystallographic studies. Their redox properties have been investigated by cyclic voltammetry and controlled potential electrolysis, which, on the basis of their measured RuII/III reversible oxidation potentials, have allowed the ordering of the bidentate acylpyrazolonate ligands according to their electron-donor character and are indicative of a small dependence of the HOMO energy upon the change of the monodentate ligand. This is accounted for by DFT calculations, which show a relevant contribution of acylpyrazolonate ligand orbitals to the HOMOs, whereas that from the monodentate ligand is minor.  相似文献   

13.
Ruthenium(II/III) complexes with tripodal tris(pyridylmethyl)amine ligands bearing one, two, or three pivalamide groups (MPPA, BPPA, TPPA: amide-series ligands) or neopentylamine ones (MNPA, BNPA, TNPA: amine-series ligands) at the 6-position of the pyridine ring have been synthesized and structurally characterized. The X-ray structure analyses of the single crystals of these complexes reveal that they complete an octahedral geometry with the tripodal ligand and some monodentate ligands. The amide-series ligands prefer to form a Ru(II) complex, while the amine-series ones give a Ru(III) complex. In the presence of PhIO oxidant, the catalytic activities for epoxidation of olefins, hydroxylation of alkane, and dehydrogenation of alcohol have been investigated using the six ruthenium complexes [Ru(II)(tppa)Cl(2)] (1), [Ru(III)(tnpa)Cl(2)]PF(6) (2), [Ru(II)(bppa)Cl]PF(6) (3), [Ru(III)(bnpa)Cl(2)]PF(6) (4), [Ru(II)(mppa)Cl]PF(6) (5), and [Ru(III)(mnpa)Cl(2)]PF(6) (6). Among them, the amide-series complexes, 1, 3, and 5, showed a higher epoxidation activity in comparison with the amine-series ones, 2, 4, and 6. On the other hand, the latter showed a higher reactivity for hydroxylation, allylic oxidation, and C=C bond cleavage reactions compared with the former. Such a complementary reactivity is interpreted by the character of the ruthenium-oxo species involving electronically equivalent formulas, Ru(V)=O and Ru(IV)-O.  相似文献   

14.
A new analytical reagent 5-(p-aminobenzylidene)-rhodanine (ABR) was synthesized. The acidic dissociation constant of ABR has been determined. The properties, the acid-base behavior of ABR and the reactions of ABR with metallic ions have been studied. The color reactions of the reagent with Pd(II), Au(III), Ag(I), Ru(III), Hg(II) and Cu(II) are studied in detail. The composition of Pd(II)-ABR, Au(III)-ABR and Ag(I)-ABR complexes were discussed.  相似文献   

15.
Yeung WF  Lau TC  Wang XY  Gao S  Szeto L  Wong WT 《Inorganic chemistry》2006,45(17):6756-6760
A series of cyano-bridged Ln(III)Ru(III)2 coordination polymers, Ph4P{Ln(NO3)2[Ru(acac)2(CN)2]2} [Ln = Tb (1), Dy (2), Er (3), Gd (4); Hacac = acetylacetone] have been synthesized by the reaction of Ln(NO3)3 with trans-Ph4P[Ru(acac)2(CN)2] in methanol. X-ray crystallographic determination reveals that these compounds are isostructural and have a wavy (4,4) layer structure with the Ln3+ ions bridged by trans-[Ru(acac)2(CN)2]-. Magnetic studies shows that the magnetic coupling between the Ln(III) and Ru(III) ions through the cyano bridges in 1-4 is negligibly weak.  相似文献   

16.
以醛为原料,在维生素B1作用下,经安息香缩合反应制得相应的苯偶姻衍生物,进而以此为原料与不同的酰化试剂酯化生成苯偶姻单酯.苯偶姻单酯与醋酸铵附着在固载体酸性氧化铝上,在无溶剂条件下微波加热合成了17种2-取代-4,5-二芳基咪唑,其中7种未见文献报道.该方法具有反应条件温和、反应时间短,且无需有机溶剂,是一种节能环保、易操作的合成方法.另外,所合成化合物的结构通过IR、高分辨质谱和核磁共振谱进行了确认.  相似文献   

17.
A Schiff base (HL) has been synthesized and characterized by physico-chemical, spectroscopic and X-ray crystallography studies. Three of its Ru(III) complexes were synthesized and characterized by analytical and spectroscopic studies. The DNA binding properties of HL and its Ru(III) complexes have been investigated by electronic absorption spectroscopy. Also, HL and its Ru(III) complex [RuCl2(AsPh3)L] were tested for DNA cleavage properties. The results showed that the complex cleaves DNA more rapidly than the free ligand. Further, an in vitro study of the cytotoxicity of HL and the complex [RuCl2(AsPh3)L] was carried out.  相似文献   

18.
The kinetics of Ru(III)-catalyzed oxidation of l-alanine (Ala) by diperiodatoargentate(III) (DPA) in alkaline medium at 25 °C and a constant ionic strength of 0.90 mol dm−3 was studied spectrophotometrically. The products are acetaldehyde, Ag(I), ammonia and bicarbonate. The [Ala] to [DPA] stoichiometry is 1:1. The reaction is first order in both [Ru(III)] and [DPA] and has less than unit order in both [Ala] and [alkali]. Addition of periodate has a retarding effect on the reaction. The effects of added products, ionic strength and dielectric constant of the reaction medium have been investigated. The reaction proceeds via a Ru(III)–Ala complex, which further reacts with one molecule of monoperiodatoargentate(III) in the rate-determining step. The reaction constants were calculated at different temperatures and the activation parameters have been evaluated.  相似文献   

19.
The kinetics and mechanism of oxidation of poly(ethylene glycol) (PEG) by the permanganate ion as a multiequivalent oxidant in aqueous perchlorate solutions at an ionic strength of 2.0 mol dm−3 has been investigated spectrophotometrically. The reaction kinetics was found to be of complex in nature. The pseudo–first‐order plots showed curves of inverted S‐shape, consisting of two distinct stages throughout the entire course of reaction. The first stage was relatively slow, followed by a fast reaction rate at longer time periods. The first‐order dependence in [MnO4], fractional first‐order dependence in [H+], and fractional first‐order kinetics in the PEG concentration for the first stage have been revealed in the absence of the Ru(III) catalyst. The influence of the Ru(III) catalyst on the oxidation kinetics has been examined. The oxidation was found to be catalyzed by the added Ru(III) catalyst. The First‐order dependence on the catalyst and zero order with respect to the oxidant concentrations have been observed. The kinetic parameters have been evaluated, and a tentative reaction mechanism consistent with the kinetic results is suggested and discussed.  相似文献   

20.
While conventional approaches have been studied for removal of ruthenium(III) ions (Ru(III)), this work focuses on the applicability of ion‐imprinted poly(methyl methacrylate‐vinyl pyrrolidone)/poly(vinylidene fluoride) blending membranes (Ru(III)–ion‐imprinted membrane[IIM]) for selective removal of Ru(III) from acidic water solutions. In order to measure the effectiveness of these imprinted membranes, after fabrication, binding experiments were done with aqueous Ru(III) solutions. The results showed that Ru(III)‐IIMs were fabricated successfully at various blending ratios, and their chemical components, microstructures, hydrophilicity, and water fluxes were measured. In pH range 0.5 to 5.0, binding capacity (Qe) of Ru(III) onto Ru(III)‐IIM increases remarkably with pH and then reaches to a maximum value (53.52 mg/g) at pH 1.5. After that, Qe gradually decreases. Compared with a nonimprinted membrane, Ru(III)‐IIM demonstrates higher selectivity for Ru(III) at pH 1.5 in the presence of Ni(II) and Cu(II) ions, and its selectivity coefficients for Ru(III)/Ni(II) and Ru(III)/Cu(II) are 3.70 and 3.32, respectively. Also, Ru(III)‐IIM shows a good chemical stability and reusability. C─N and C═O bonds within poly(vinyl pyrrolidone) segments of poly(methyl methacrylate‐vinyl pyrrolidone) (P(MMA‐VP)) participate the uptake of Ru(III). Ru(III)‐IIM exhibited excellent hydrophilicity and Ru(III) selective adsorption ability and reusability and has potential to be used for Ru(III) removal from acidic water solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号