首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface properties of several purified cellulose (Sigmacell 101, Sigmacell 20, Avicel pH 101, and Whatman CF 11) were characterised, before and after cellulase adsorption. The following techniques were used: thin-layer wicking (except for the cellulose Whatman), thermogravimetry, and differential scanning calorimetry (for all of the above celluloses). The results obtained from the calorimetric assays were consistent with those obtained from thin-layer wicking – Sigmacell 101, a more amorphous cellulose, was the least hydrophobic of the analysed celluloses, and had the highest specific heat of dehydration. The other celluloses showed less affinity for water molecules, as assessed by the two independent techniques. The adsorption of protein did not affect the amount of water adsorbed by Sigmacell 101. However, this water was more strongly adsorbed, since it had a higher specific heat of dehydration. The more crystalline celluloses adsorbed a greater amount of water, which was also more strongly bound after the treatment with cellulases. This effect was more significant for Whatman CF-11. Also, the more crystalline celluloses became slightly hydrophilic, following protein adsorption, as assessed by thin-layer wicking. However, this technique is not reliable when used with cellulase treated celluloses.  相似文献   

2.
Sweet and bitter tastes are known to be mediated by G-protein-coupled receptors. The relationship between the chemical structure of gustable molecules and their molecular organization in saliva (aqueous solution) near the surface of the tongue provides a useful tool for elucidating the mechanism of chemoreception. The interactions between stimulus and membrane receptors occur in an anisotropic system. They might be influenced by the molecular packing of gustable molecules within an aqueous solvent (saliva) close to the receptor protein. To investigate the molecular organization of a sweet molecule (sucrose), a bitter molecule (caffeine), and their mixture in an aqueous phase near a "wall", a hydrophobic phase, we modeled this using an air/liquid interface as an anisotropic system. The experimental (tensiometry and ellipsometry) data unambiguously show that caffeine molecules form an adsorption layer, whereas sucrose induces a desorption layer at the air/water interface. The adsorption of caffeine molecules at the air/water interface gradually increases with the volume concentration and is delayed when sucrose is added to the solution. Spectroscopic ellipsometry data show that caffeine in the adsorption layer has optical properties practically identical to those of the molecule in solution. The results are interpreted in terms of molecular association of caffeine with itself at the interface with and without sucrose in the subphase, using the theory of ideal gases.  相似文献   

3.
The shear and dilatational rheology of condensed interfacial layers of the water-insoluble surfactant sorbitan tristearate at the air/water interface is investigated. A new interfacial shear rheometer allows measurements in both stress- and strain-controlled modes, providing comprehensive interfacial rheological information such as the interfacial dynamic shear moduli, the creep response to a stress pulse, the stress relaxation response to a strain step, or steady shear curves. Our experiments show that the interfacial films are both viscoelastic and brittle in nature and subject to fracture at small deformations, as was supported by in-situ Brewster angle microscopy performed during the rheological experiments. Although any large-deformation test is destructive to the sample, it is still possible to study the linear viscoelastic regime if the deformations involved are controlled carefully. Complementary results for the dilatational rheology in area step compression/expansion experiments are reported. The dilatational behavior is predominantly elastic throughout the frequency spectrum measured, whereas the layers exhibit generalized Maxwell behavior in shear mode within a deformation frequency regime as narrow as two decades, indicating the presence of additional relaxation mechanisms in shear as opposed to expansion/compression. If the transient rheological response from stress relaxation experiments is considered, then the data can be described well with a stretched exponential model both in the shear and dilatational deformations.  相似文献   

4.
The surfaces of fumed silica materials were modified with a surface sol-gel process for catalysis applications. This surface-modification approach allows not only a monolayer growth of TiO(2) or Al(2)O(3) but also a stepwise double-layer growth of TiO(2)/TiO(2), Al(2)O(3)/Al(2)O(3), TiO(2)/Al(2)O(3), or Al(2)O(3)/TiO(2) on the surfaces of the silica materials with a monolayer precision. XRD analyses revealed that the coated monolayers and double layers of TiO(2) and Al(2)O(3) were amorphous. Gold nanoparticles were successfully deposited on the above six surface-modified silica materials via a deposition-precipitation method. The catalytic activities of these six gold catalysts for CO oxidation are highly dependent on the structures of their surface monolayers or double layers. The gold catalyst supported on the silica material functionalized with a TiO(2) monolayer (Au/TiO(2)) is the most active in both as-synthesized and oxidized forms, while the gold catalyst supported on the silica material functionalized with an Al(2)O(3)/TiO(2) double layer (Au/Al(2)O(3)/TiO(2)/SiO(2)) is the most active in the reduced form among the six catalysts. Surprisingly, the gold catalyst supported on the silica material functionalized with a TiO(2)/Al(2)O(3) double layer (Au/TiO(2)/Al(2)O(3)/SiO(2)) has much less activity than Au/Al(2)O(3)/TiO(2)/SiO(2) under all various treatments, underscoring the sensitivity of the catalytic activity to the structure of the supporting surfaces.  相似文献   

5.
To improve the surface and mechanical interfacial properties of epoxy resins, fluorine-containing epoxy resin (FEP) was prepared and blended with a commercially available tetrafunctional epoxy resin (TGDDM). As a result, when the fluorine content increased, the total surface energy of TGDDM/FEP blends was gradually decreased, while the water repellency of the blends was increased. The glass transition temperature and thermal stability factors of the blends showed maximum values at 20-40 wt% FEP compared with neat TGDDM epoxy resins. And the mechanical interfacial properties of the blend specimens were significantly increased with increasing the FEP content, which could be attributed to the intermacromolecular interactions in the cured TGDDM/FEP blends. These results indicate that the water repellency and toughness improvements have been achieved without significantly deterioration of the thermal properties in the TGDDM/FEP blends.  相似文献   

6.
In this paper, a new method of stabilizing supported liquid membranes is presented. The stabilization is based on the application of polymeric top layers to the surface of microfiltration membranes, preventing loss of the liquid membrane phase out of the support pores. The modified microfiltration membranes were used as supports for supported liquid membranes and tested on selective nitrate transport and stability. Screening experiments revealed that most applied top layers did not hinder the transport of nitrate ions. However, a few were able to improve the stability of the liquid membranes. Best results were obtained when piperazine (PIPA) and trimesoyl chloride (TMCl) were used as monomers. For Accurel polypropylene supports with PIPA/TMCl top layer, nitrate flux was constant at the initial 18 × 10−10 mol cm−2 s−1 for 350 h of simulated operation. For uncoated supported liquid membranes (SLMs), the flux decreased within one day from 18 × 10−10 to almost 0 mol cm−2 s−1. Scanning electron microscopy investigations revealed a particular, rippled surface texture of layers prepared with these monomers.  相似文献   

7.
A polyacrylonitrile‐based carbon fiber was electrochemically oxidized in an aqueous ammonium bicarbonate solution with current density of up to 2.76 A/m2 at room temperature. X‐ray photoelectron spectroscopy revealed that the oxygen content increased with increasing current density before approaching saturation. The increase can be divided into two regions, the rapid increase region (0–1.78 A/m2) and a plateau region (1.78–2.76 A/m2). The surface chemistry analysis showed that the interlaminar shear strength (ILSS) value of the carbon fiber/epoxy composite could be improved by 24.7%. The carbon structure was examined using Raman spectroscopy in terms of order/disorder in the graphite structure and the results indicated that the relative percentage of graphite carbon in the form of sp2 hybridization increased above a current density of 1.39 A/m2. The increasing non‐polar graphite carbon on the carbon fiber surface decreased the surface energy. As a result, both the surface free energy () and its polar component () decreased when current density increased above 1.78 A/m2. The ILSS value had no direct relationship with the nature and surface density of the oxygen‐containing functional groups nor with the carbon structure. It is the surface free energy (), especially the polar component (), which played a critical role in affecting the interfacial adhesion of carbon fiber/epoxy composites. The ILSS value changed with increasing current density and could be divided into three distinct regions, as chemical interaction region (I), anchor force region (II) and matrix damage region (III). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A homologous series of new surface-active N,N-di-n-alkyl-substituted amides derived from delta-D-gluconolactone and alpha-D-glucoheptonic-gamma-lactone were synthesized. The adsorption isotherms of their surface-chemically pure solutions were measured and evaluated to obtain the adsorption parameters of standard free energy of adsorption (DeltaG(0)(ad)), surface excess (Gamma( infinity )), cross-sectional area of the adsorbed surfactant molecule (A(min)), and surface interaction parameter (H(s)). The surfactants possess comparatively low solubilities and do not form micelles at room temperature. This behavior is opposite to that of the other types of sugar surfactants showing excellent solubility and a strong tendency to association/micellization. The derivatives of gluconamide reveal surface activity slightly higher than that of the derivatives of glucoheptonamide, especially for long alkyl chains (n(C)>4). An increase in A(min) of about 6 A(2)/molecule for the gluconic series is observed.  相似文献   

9.
The effect of an adsorbed anionic surfactant sodium dodecyl benzene sulfonate(SDBS) on electron transfer(ET) reaction between ferricyanide aqueous solution and decamethylferrocene(DMFc) located on the adjacent organic phase was investigated for the first time by thin layer method.The adsorption of SDBS at the interface resulted in a decay in the cathodic plateau current of bimolecular reaction with increasing concentrations of SDBS in aqueous phase.However,the rate constant of electron transfer(k_(et)) i...  相似文献   

10.
In this work, red mud (RM) was chemically modified by 0.1, 1, and 5 M H(3)PO(4) solution to prepare epoxy/RM nanocomposites. The effect of chemical treatment on a RM surface was studied in terms of pH, acid-base values, N(2)/77 K gas adsorption, equilibrium spreading pressure (pi(e)), and surface free energy. The mechanical interfacial properties of epoxy/RM nanocomposites was measured in the context of critical stress intensity factor (K(IC)) and critical strain energy release rate (G(IC)) measurements. From the experimental results, the acidic surface treatment led to a modification of the RM surface properties, such as the surface acid values, porosity, specific surface area, pi(e), and London dispersive component (gamma(S)(L)) of surface free energy of the treated RM as an increase of the treatment concentration. In the fracture toughness (K(IC) and G(IC)) measurements, the mechanical interfacial properties of epoxy/treated RM nanocomposites were intimately correlated with the improvement of interfacial adhesion between the RM surface and a matrix and the increase of gamma(S)(L) of surface free energy of the RM due to the development of S(BET) or porosity of RM surfaces.  相似文献   

11.
Gold nanoparticles (Au NPs) were prepared and surface-modified by mercaptosuccinic acid (MSA) to render a surface with carboxylic acid groups (MSA-Au). Octadecylamine (ODA) was used as a template monolayer to adsorb the Au NPs dispersed in the subphase. The effect of MSA concentration on the incorporation of Au NPs on the ODA monolayer and the relevant behavior of the mixed monolayer were studied using the pressure-area (pi-A) isotherm and transmission electron microscopy (TEM) observations. The experimental results showed that the adsorbed density of Au NPs is low without the surface modification by MSA. When MSA was added into the Au NP-containing subphase, the incorporation amount of Au NPs increased with increasing MSA concentration up to approximately 1 x 10-5 M for the particle density of 1.3 x 1011 particles/mL. With a further increase in the MSA concentration, the adsorbed particle density decreases due to competitive adsorption between the free MSA molecules and the MSA-Au NPs. It is inferred that free MSA molecules adsorb more easily than the MSA-Au NPs on the ODA monolayer. Therefore, an excess amount of MSA present in the subphase is detrimental to the incorporation of gold particles. The study on the monolayer behavior also shows that the pi-A isotherm of the ODA monolayer shifts right when small amounts of Au NPs or free MSA molecules are incorporated. However, when larger amounts of particles are adsorbed at the air/liquid interface, a left shift of the pi-A isotherm appears, probably due to the adsorption of ODA molecules onto the particle surface and the transferring of the particles from beneath the ODA monolayer to the air/water interface. According to the present method, it is possible to prepare uniform particulate films of controlled densities by controlling the particle concentration in the subphase, the MSA concentration, and the surface pressure of a mixed monolayer.  相似文献   

12.
Carbon fibers were coated in an attempt to improve the interfacial properties between carbon fibers and ultra‐high molecular weight polyethylene resin matrix. Atomic force microscopy, scanning electron microscopy, and X‐ray photoelectron spectroscopy were performed to characterize the changes of carbon fiber surface. Atomic force microscopy results show that the coating of carbon fiber significantly increased the carbon fiber surface roughness. X‐ray photoelectron spectroscopy indicates that silicon containing functional groups obviously increased after modification. Interlaminar shear strength was used to characterize the interfacial properties of the composites.  相似文献   

13.
The effect of γ-radiation on gas-ionic liquid (IL) and water-IL interfacial stability was investigated. Three phosphonium-based ILs, which vary considerably in their viscosity, conductivity and miscibility with water, were examined. The gas phase above the IL samples (headspace gas) was analyzed using gas chromatography with a mass spectrometer detector while the changes in the IL and aqueous phases were followed by conductivity measurements and Raman spectroscopy. For the gas-IL systems, the headspace samples showed trace amounts of the radiolytic decomposition products of the ILs that were small and volatile enough to become airborne. The type of cover gas, air or Ar, had no effect on the gas speciation. Negligible changes in the conductivity and the Raman spectra of the IL phase due to irradiation indicate that γ-irradiation induces negligible chemical changes in the IL phase when it is in contact with a gas phase. For the water-IL systems, the initially immiscible layers slowly developed an interfacial emulsion layer, even in the absence of radiation. This layer started at the water-IL interface and then grew downwards, eventually converting the entire IL phase to an emulsion. Gamma-irradiation accelerated the conversion of the IL phase to an emulsion. The development of the emulsion layer was accompanied by changes in the conductivity and the Raman spectra of both the IL and water phases. Based on these results, a mechanism involving the formation of micelles at, or near, the water-IL interface has been proposed to explain the development of an emulsion layer. We also suggest that radiolytic decomposition of ILs produces surfactants that can accumulate at the interface and, even at low concentrations, accelerate the emulsification process.  相似文献   

14.
Ultrathin SnO(2) layers were deposited on FTO substrate by the layer-by-layer (LbL) self-assembly technique utilizing negatively charged 2.5 nm sized SnO(2) nanoparticles (NPs) and cationic poly(allylamine hydrochloride) (PAH). For the construction of dye-sensitized solar cells (DSC), the bulk TiO(2) layer was deposited over the (PAH/SnO(2))(n) (n = 1-10) and subsequently calcined at 500 °C to remove organic components. With introducing four layers of self-assembled SnO(2) interfacial layer (IL), the short circuit current density (J(sc)) of DSCs was increased from 8.96 to 10.97 mA/cm(2), whereas the open circuit voltage (V(oc)) and fill factor (FF) were not appreciably changed. Consequently, photovoltaic conversion efficiency (η) was enhanced from 5.43 to 6.57%. Transient photoelectron spectroscopic analyses revealed that the ultrathin SnO(2) layer considerably increased the electron diffusion coefficient (D(e)) in TiO(2) layer, but the electron lifetime (τ(e)) was decreased unexpectedly. The observed unusual photovoltaic properties would be caused by the unique conduction band (CB) location of the SnO(2), inducing the cascadal energy band matching among the CBs of TiO(2), SnO(2), and FTO.  相似文献   

15.
Synthetic aspects of silver nanoparticle preparation in one-and two-phase aqueous and water-organic media and the influence of experimental factors on particle size and surface hydrophilicity/hydrophobicity are studied. It is shown that silver nanoparticles with controlled mean size and surface hydrophilic-hydrophobic properties can be obtained through direct synthesis or successive transformations.  相似文献   

16.
Dairy foams were manufactured on a pilot plant with various sucrose ester contents. Oil-in-water emulsions were produced by high-pressure homogenisation of anhydrous milk fat (20 wt%) with an aqueous phase containing skim milk powder (6.5 wt%), sucrose (15 wt%), hydrocolloids (2 wt%), and sucrose esters. Sucrose ester content was varied from 0 to 0.35 wt%. Firmness and stability of dairy foams were determined. The fraction of protein associated with emulsion fat droplets and the compression isotherms of those droplets were determined as a function of sucrose ester content. With less than 0.1 wt% sucrose ester, no foam could be produced. The most firm and stable foams were obtained with ca. 0.1 wt% sucrose ester. The fraction of protein associated with emulsion droplets suddenly falls from 60% at a sucrose ester content lower than 0.1125% down to ca. 10-20% for higher surfactant content. Compression isotherms of emulsion droplets at the air-water interface show that, in the presence of surfactant, emulsion droplets disrupt and spread at the interface whilst without surfactant they become dispersed. This means that the presence of sucrose ester causes some destabilisation of fat droplet interfacial layers. There is hence an optimal sucrose ester content that allows some destabilisation of the oil-water interface without concomitant protein displacement from that interface. Consequently, with the recipe and manufacturing process used to produce dairy foams, there exists a compromise in sucrose ester content with regards to manufacture and shelf-life of dairy foams.  相似文献   

17.
18.
Porphyrin nanofiber patterning was generated by air/water interfacial assembly. The air/water interfacial aggregation behavior of two prophyrins, both of which contain two hydrophobic alkyl chains and two carboxylic acid substituent groups at different positions, was investigated using UV spectra, FT-IR spectra, and AFM measurements on the corresponding transferred films. The porphyrin nanofiber patterning can only be produced on ionic liquid (IL) doped water subphases by the assembly of the building blocks with two carboxylic acids located at the para-position (TPPA2b-A). The results suggest that the bulky cations of ionic liquids (ILs) can interact with the carboxylate of porphyrin electrostatically. The appropriate molecular geometries, ionic liquid (IL) doped water subphases, and relatively high surface pressures help the TPPA2b-A to form nanofiber patterns.  相似文献   

19.
不同稀释剂中HDEHP的界面性质研究   总被引:2,自引:0,他引:2  
用滴体积法研究了HDEHP在不同稀释剂-0.05mol.dm^-^3(N2, Na2)SO4(pH=2.40)体系中的界面性质, 认为吸附于液-液界面的是单体HDEHP分子, 得到了各体系中HDEHP的Cmin, Tmax, Ai以及△Gad等界面吸附参数。HDEHP在不同稀释剂体系中的界面活性顺序为: 脂肪烃>芳香烃>氯仿>甲基异丁基酮, 这种变化主要是在体相中和界面上稀释剂与萃取剂、界面上的萃取剂及稀释剂与界面层水之间分子间相互作用的结果。同时讨论了HDEHP在不同稀释剂中的萃取动力学机理。  相似文献   

20.
The electronic structures of Alq3/Si(100), Alq3/LiBr/Si(100), and Alq3/KCl/Si(100) systems are presented in this report. Their energy level diagrams were prepared and discussed. The formation of the LiBr and KCl interfacial layers between an Alq3 film and a Si(100) substrate results in a decrease of the energy barrier at the interface. The studies were carried out in situ in ultrahigh vacuum by ultraviolet photoelectron spectroscopy. Alq3 as well as LiBr and KCl layers were vapour evaporated onto n‐type Si(100) crystal. The electron affinity of clean Si(100) surface was 4.0 eV, and the position of the valence band maximum was 0.7 eV below EF. The energetic distance between the valence band maximum of Si(100) and the highest occupied molecular orbital level were 1.5, 2.6, and 2.2 eV, for the Alq3/Si(100), Alq3/LiBr/Si(100), and Alq3/KCl/Si(100) systems, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号