首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel organic sensitizers comprising donor, electron-conducting, and anchoring groups were engineered at molecular level and synthesized. The functionalized unsymmetrical organic sensitizers 3-{5-[N,N-bis(9,9-dimethylfluorene-2-yl)phenyl]-thiophene-2-yl}-2-cyano-acrylic acid (JK-1) and 3-{5'-[N,N-bis(9,9-dimethylfluorene-2-yl)phenyl]-2,2'-bisthiophene-5-yl}-2-cyano-acrylic acid (JK-2), upon anchoring onto TiO2 film, exhibit unprecedented incident photon to current conversion efficiency of 91%. The photovoltaic data using an electrolyte having composition of 0.6 M M-methyl-N-butyl imidiazolium iodide, 0.04 M iodine, 0.025 M LiI, 0.05 M guanidinium thiocyanate, and 0.28 M tert-butylpyridine in a 15/85 (v/v) mixture of valeronitrile and acetonitrile revealed a short circuit photocurrent density of 14.0 +/- 0.2 mA/cm2, an open circuit voltage of 753 +/- 10 mV, and a fill factor of 0.76 +/- 0.02, corresponding to an overall conversion efficiency of 8.01% under standard AM 1.5 sunlight. DFT/TDDFT calculations have been performed on the two organic sensitizers to gain insight into their structural, electronic, and optical properties. Our results show that the cyanoacrylic acid groups are essentially coplanar with respect to the thiophene units, reflecting the strong conjugation across the thiophene-cyanoacrylic groups. Molecular orbitals analysis confirmed the experimental assignment of redox potentials, while TDDFT calculations allowed assignment of the visible absorption bands.  相似文献   

2.
Duckhyun Kim  Kihyung Song  Jaejung Ko 《Tetrahedron》2008,64(45):10417-10424
Three organic dyes, JK-77, JK-78, and JK-79 containing indole unit are designed and synthesized. Nanocrystalline TiO2 dye-sensitized solar cells were fabricated using these dyes. Under standard global AM 1.5 solar condition, the JK-79 sensitized solar cell gave a short circuit photocurrent density of 13.62 mA cm−2, open-circuit voltage of 0.705 V, and a fill factor of 0.74, corresponding to an overall conversion efficiency η of 7.18%. We found that the η of JK-79 was higher than those of other two cells due to the higher Voc. The improved Voc value is attributed to the suppression of dark current owing to the blocking effect of a long alkyl chain.  相似文献   

3.
Three organic sensitizers containing bis-dimethylfluorenyl amino donor and a cyanoacrylic acid acceptor bridged by p-phenylene vinylene unit were synthesized. The power conversion efficiency was quite sensitive to the length of bridged phenylene vinylene groups. A nanocrystalline TiO2 dye-sensitized solar cell was fabricated using three sensitizers. The maximum power conversion efficiency of JK-59 reached 7.02%.  相似文献   

4.
Dye‐sensitized solar cells (DSSCs) have attracted considerable attention in recent years as they offer the possibility of low‐cost conversion of photovoltaic energy. This account focuses on recent advances in molecular design and technological aspects of sensitizers based on metal complexes, metal‐free organics and tetrapyrrolic compounds which include porphyrins, phthalocyanines as well as corroles. Special attention has been paid to the design principles of these dyes, and co‐sensitization, an emerging technique to extend the absorption range, is also discussed as a way to improve the performance of the device. This account also focuses on recent advances of efficient ruthenium sensitizers as well as other metal complexes and their applications in DSSCs. Recent developments in the area of metal‐free organic and tetrapyrrolic sensitizers are also discussed. DOI 10.1002/tcr.201100044  相似文献   

5.
Chang DW  Lee HJ  Kim JH  Park SY  Park SM  Dai L  Baek JB 《Organic letters》2011,13(15):3880-3883
Novel quinoxaline-based organic sensitizers using vertical (RC-21) and horizontal (RC-22) conjugation between an electron-donating triphenylamine unit and electron-accepting quinoxaline unit have been synthesized and used for dye-sensitized solar cells (DSSCs), leading to the relatively high power conversion efficiencies of 3.30 and 5.56% for RC-21 and RC-22, respectively. This result indicates that the quinoxaline electron-accepting unit is quite a promising candidate in organic sensitizers.  相似文献   

6.
Novel indoline dyes, I-1-I-4, with structural modification of π-linker group in the D-π-A system have been synthesized and fully characterized. Molecular engineering through expanding the π-linker segment has been performed. The ground and excited state properties of the dyes have been studied by means of density functional theory (DFT) and time-dependent DFT (TD-DFT). Larger π-conjugation linkers would lead to broader spectral response and higher molar extinction coefficient but would decrease dye-loaded amount on TiO(2) electrode and LUMO level. While applied in DSSCs, the variation trends in short-circuit current density (J(sc)) and open-circuit voltage (V(oc)) were observed to be opposite to each other. The internal reasons were studied by experimental data and theoretical calculations in detail. Notably, I-2 showed comparable photocurrent values with liquid and quasi-solid state electrolyte, which suggested through molecular engineering of organic sensitizers the dilemma between optical absorption and charge diffusion lengths can be balanced well. Through studies of photophysical, electrochemical, and theoretical calculation results, the internal relations between chemical structure and efficiency have been revealed, which serve to enhance our knowledge regarding design and optimization of new sensitizers for quasi-solid state DSSCs, providing a powerful strategy for prediction of photovoltaic performances.  相似文献   

7.
New dipolar dyes containing arylamine as the electron donor, 2-cyanoacrylic acid as the acceptor, and a conjugated spacer with incorporation of 2,5-pyridyl entity have been synthesized. Photophysical and electrochemical measurements, and theoretical computation were carried on these dyes. The solar cell devices using these dyes as the sensitizers exhibited light-to-electricity efficiencies in the range of 4.28–5.27%, which reaches 60–72% of N719-based device fabricated and measured under similar conditions. Better DSSC performance can be achieved with the dye where pyridine group is attached to thienyl or fluorenyl group because of favorable resonance energy and/or coplanarity for more effective charge transfer.  相似文献   

8.
Developing arylamine photosensitizers with high extinction coefficients, proper electronic structures, and steric properties is warranted for the dye-sensitized solar cells (DSCs) employing iodine-free redox shuttles. Two new organic sensitizers (M21 and M22) featuring unsymmetrical truxene-based triarylamine donor have been synthesized and compared to its reference sensitizer M4. The effects of unsymmetrical truxene-based triarylamine donors were investigated by their absorption spectra, electrochemical and photovoltaic properties. The incorporation of strong electron donor unit (i.e., dipropylfluorene and 4-methoxybiphenyl) has resulted in an improved light harvesting capacity, and thus photocurrent as well as efficiency of cells. M22 sensitized DSCs employing the Co(II/III)tris(1,10-phenanthroline)-based redox electrolyte affords a short circuit photocurrent of 13.1 mA cm−2, an open circuit voltage of 861 mV, and a fill factor of 0.70, corresponding to an overall conversion efficiency of 7.89% under standard AM 1.5 sunlight.  相似文献   

9.
Amphiphilic ligands 4,4'-bis(1-adamantyl-aminocarbonyl)-2,2'-bipyridine (L(1)), 4,4'-bis[5-[N-[2-(3beta-cholest-5-en-3-ylcarbamate-N-yl)ethyl]aminocarbonyl]]-2,2'-bipyridine (L(2)), 4,4'-bis[5-[N-[2-(3beta-cholest-5-en-3-ylcarbamate-N-yl)propyl]aminocarbonyl]]-2,2'-bipyridine (L(3)), and 4,4'-bis(dodecan-12-ol)-2,2'-bipyridine (L(4)) and their heteroleptic ruthenium(II) complexes of the type [Ru(II)LL(1)(NCS)(2)] (5), [Ru(II)LL(2)(NCS)(2)] (6), [Ru(II)LL(3)(NCS)(2)] (7), and [Ru(II)LL(4)(NCS)(2)] (8) (where L = 4,4'-bis(carboxylic acid)-2,2'-bipyridine) have been synthesized starting from dichloro(p-cymene)ruthenium(II) dimer. All the ligands and the complexes were characterized by analytical, spectroscopic, and electrochemical techniques. The performance of these complexes as charge-transfer photosensitizers in nanocrystalline TiO(2)-based solar cells was studied. When complexes 5-8 anchored onto a 12 + 4 microm thick nanocrystalline TiO(2) films, very efficient sensitization was achieved (85 +/- 5% incident photon-to-current efficiencies in the visible region, using an electrolyte consisting of 0.6 M butylmethylimidazolium iodide, 0.05 M I(2), 0.1 M LiI, and 0.5 M tert-butyl pyridine in 1:1 acetonitrile + valeronitrile). Under standard AM 1.5 sunlight, the complex 8 yielded a short-circuit photocurrent density of 17 +/- 0.5 mA/cm(2), the open-circuit voltage was 720 +/- 50 mV, and the fill factor was 0.72 +/- 0.05, corresponding to an overall conversion efficiency of 8.8 +/- 0.5%.  相似文献   

10.
Indacenodithiophene (IDT)-based high-efficiency photovoltaics have received increasing attention recently. This paper reports a density functional theory investigation of the electronic and optical properties of three IDT-based organic dyes together with the dye/(TiO2)46 interface. In order to enhance the photoelectric properties of IDT dyes, this paper considers two methods for the structure modification of the experimentally reported dye DPInDT (J. Org. Chem. 2011, 76, 8977): the extension of the conjugation length by dithienothiophene as well as the heteroatom substitution of the bridging atoms by electron-rich nitrogen atoms. Our calculations show that both methods obviously affect the distributions of the molecular orbitals and notably red shift the absorption peaks of around 20 nm, with the former method demonstrating enhanced light harvesting efficiency. The structure modifications proposed also enhance the emission spectrum properties for IDT-based organic dyes. The calculated ultrafast injection time of electrons from the excited state of IDT dyes to the (TiO2)46 belongs to the femtosecond order of magnitude, and is ideal for efficient photoelectric conversion process in dye-sensitized solar cells (DSSCs) applications. The IDT dyes designed in this paper have good electronic and spectroscopic properties. This study is expected to provide useful guidance for the development of novel IDT dyes for applications in DSSCs.  相似文献   

11.
12.
Five functionalized organic dyes (H6-10) containing a phenanthroimidazole unit as an electron donor were synthesized and characterized for use in dye-sensitized solar cell (DSSC) applications. Under standard global AM 1.5 solar conditions, the DSSCs based on dye H6 displayed the best performance, with an incident photon-to-current conversion efficiency (IPCE) exceeding 70% at wavelengths of 400–530 nm, a short-circuit photocurrent density of 10.98 mA cm?2, an open-circuit voltage of 0.68 V, a fill factor of 0.69, and an overall conversion efficiency of 5.12%. This efficiency is ~94% of that for JK2 cells (5.46%) and ~72% of that for N719 cells (7.07%) under the same conditions.  相似文献   

13.
Anionic polyfluorene and oligofluorene derivatives were synthesized and utilized as organic dye sensitizers in dye sensitized solar cells to show a maximum power conversion efficiency of 1.39%.  相似文献   

14.
Hybrids based on a dibenzosuberene core bearing a spiro-fluorene junction at the C-5 position and with amino donor and β-thiophenyl-α-cyanoacrylic acid acceptor groups at C-3 and C-7, respectively, serve as new organic sensitizer materials for solar cell applications. Solar cell devices based on these materials show a conversion efficiency (η) of up to 6.1% (V(oc) = 697 mV, J(sc) = 12.2 mA cm(-2), FF = 0.72) under AM 1.5 G conditions. The best IPCE values exceed 75% within the 450-550 nm absorption range.  相似文献   

15.
We report the first case of Ru(ii) dipyrrinates employed as dyes in dye-sensitized solar cells. These complexes exhibit panchromatic light harvesting that results in significant DSSC current densities, rendering them promising for photovoltaic applications. Adjustment of the lowest excited state energy is required to boost the power conversion efficiency.  相似文献   

16.
Do K  Kim D  Cho N  Paek S  Song K  Ko J 《Organic letters》2012,14(1):222-225
A new type of organic sensitizers incorporating a planar amine unit have been synthesized and demonstrated to be a highly efficient sensitizers, showing evidence of lateral interactions on the TiO(2) surface. Under standard global air mass 1.5 solar conditions, the JK-98 sensitized cell gave a short circuit photocurrent density (J(sc)) of 16.78 mA cm(-2), an open-circuit voltage (V(oc)) of 0.745 V, and a fill factor (ff) of 0.70, corresponding to an overall conversion efficiency (η) of 8.71%.  相似文献   

17.

Abstract  

Dye-sensitized solar cells (DSSCs) have gained great attention as lower-cost alternatives to conventional photovoltaic devices. One way to improve the excellent efficiencies (ca. 11%) exhibited by DSSCs based on ruthenium polypyridyl dyes would consist in using sensitizers with enhanced light-harvesting properties in the red region of the spectrum. Phthalocyanines (Pcs) are very robust molecules which present extraordinary high extinction coefficients in the 600- to 700-nm spectral region. Intensive research has been focused on reducing the undesired aggregation phenomena of Pcs on the metal oxide surface, while keeping a good electronic coupling between the LUMO of the Pcs and the TiO2 conduction band, and a good solubility of the dye in organic solvents. Recently, unsymmetrically substituted “push–pull” Pcs have emerged as efficient red-absorbing dyes, reaching power conversion efficiencies of up to 4.7%, when used as single sensitizers.  相似文献   

18.
A set of two donor-acceptor type conjugated polymers with carboxylic acid side groups have been synthesized and utilized as active materials for dye-sensitized solar cells (DSSCs). The polymers feature a π-conjugated backbone consisting of an electron-poor 2,1,3-benzothiadiazole (BTD, acceptor) unit, alternating with either a thiophene-fluorene-thiophene triad (2a) or a terthiophene (3a) segment as the donor. The donor-acceptor polymers absorb broadly throughout the visible region, with terthiophene-BTD polymer 3a exhibiting an absorption onset at approximately 625 nm corresponding to a ~1.9 eV bandgap. The polymers adsorb onto the surface of nanostructured TiO(2) due to interaction of the polar carboxylic acid units with the metal oxide surface. The resulting films absorb visible light strongly, and their spectra approximately mirror the polymers' solution absorption. Interestingly, a series of samples of 3a with different molecular weight (M(n)) adsorb to TiO(2) to an extent that varies inversely with M(n). DSSCs that utilize the donor-acceptor polymers as sensitizers were tested using an I(-)/I(3)(-) electrolyte. Importantly, for the set of polymer sensitizers 3a with varying M(n), the DSSC efficiency varies inversely with M(n), a result that reflects the difference in adsorption efficiency observed in the film absorption experiments. The best DSSC cell tested is based on a sample of 3a with M(n) ~ 4000, and it exhibits a ~65% peak IPCE with J(sc) ~12.6 mA cm(-2) under AM1.5 illumination and an overall power conversion efficiency of ~3%.  相似文献   

19.
20.
Journal of Solid State Electrochemistry - The phenyl-conjugated oligoene dye 2-cyano3-(4-diphenylaminophenyl)prop-2-enoic acid (SKS) was synthesized by chemical method, and its structure was...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号