首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distributed consensus optimization has received considerable attention in recent years and several distributed consensus-based algorithms have been proposed for (nonsmooth) convex and (smooth) nonconvex objective functions. However, the behavior of these distributed algorithms on nonconvex, nonsmooth and stochastic objective functions is not understood. Such class of functions and distributed setting are motivated by several applications, including problems in machine learning and signal processing. This paper presents the first convergence analysis of the decentralized stochastic subgradient method for such classes of problems, over networks modeled as undirected, fixed, graphs.  相似文献   

2.
3.
Science China Mathematics - In this work, we present probabilistic local convergence results for a stochastic semismooth Newton method for a class of stochastic composite optimization problems...  相似文献   

4.
In this paper, we develop a version of the bundle method to solve unconstrained difference of convex (DC) programming problems. It is assumed that a DC representation of the objective function is available. Our main idea is to utilize subgradients of both the first and second components in the DC representation. This subgradient information is gathered from some neighborhood of the current iteration point and it is used to build separately an approximation for each component in the DC representation. By combining these approximations we obtain a new nonconvex cutting plane model of the original objective function, which takes into account explicitly both the convex and the concave behavior of the objective function. We design the proximal bundle method for DC programming based on this new approach and prove the convergence of the method to an \(\varepsilon \)-critical point. The algorithm is tested using some academic test problems and the preliminary numerical results have shown the good performance of the new bundle method. An interesting fact is that the new algorithm finds nearly always the global solution in our test problems.  相似文献   

5.
The gradient sampling (GS) algorithm for minimizing a nonconvex, nonsmooth function was proposed by Burke et al. (SIAM J Optim 15:751–779, 2005), whose most interesting feature is the use of randomly sampled gradients instead of subgradients. In this paper, combining the GS technique with the sequential quadratic programming (SQP) method, we present a feasible SQP-GS algorithm that extends the GS algorithm to nonconvex, nonsmooth constrained optimization. The proposed algorithm generates a sequence of feasible iterates, and guarantees that the objective function is monotonically decreasing. Global convergence is proved in the sense that, with probability one, every cluster point of the iterative sequence is stationary for the improvement function. Finally, some preliminary numerical results show that the proposed algorithm is effective.  相似文献   

6.
7.
This paper presents a parameterized Newton method using generalized Jacobians and a Broyden-like method for solving nonsmooth equations. The former ensures that the method is well-defined even when the generalized Jacobian is singular. The latter is constructed by using an approximation function which can be formed for nonsmooth equations arising from partial differential equations and nonlinear complementarity problems. The approximation function method generalizes the splitting function method for nonsmooth equations. Locally superlinear convergence results are proved for the two methods. Numerical examples are given to compare the two methods with some other methods.This work is supported by the Australian Research Council.  相似文献   

8.
Tran-Dinh  Quoc  Pham  Nhan H.  Phan  Dzung T.  Nguyen  Lam M. 《Mathematical Programming》2022,191(2):1005-1071
Mathematical Programming - We introduce a new approach to develop stochastic optimization algorithms for a class of stochastic composite and possibly nonconvex optimization problems. The main idea...  相似文献   

9.
Piecewise linear approximations in nonconvex nonsmooth optimization   总被引:1,自引:0,他引:1  
We present a bundle type method for minimizing nonconvex nondifferentiable functions of several variables. The algorithm is based on the construction of both a lower and an upper polyhedral approximation of the objective function. In particular, at each iteration, a search direction is computed by solving a quadratic program aiming at maximizing the difference between the lower and the upper model. A proximal approach is used to guarantee convergence to a stationary point under the hypothesis of weak semismoothness. This research has been partially supported by the Italian “Ministero dell’Istruzione, dell’Università e della Ricerca”, under PRIN project Ottimizzazione Non Lineare e Applicazioni (20079PLLN7_003).  相似文献   

10.
《Optimization》2012,61(4):717-738
Augmented Lagrangian duality provides zero duality gap and saddle point properties for nonconvex optimization. On the basis of this duality, subgradient-like methods can be applied to the (convex) dual of the original problem. These methods usually recover the optimal value of the problem, but may fail to provide a primal solution. We prove that the recovery of a primal solution by such methods can be characterized in terms of (i) the differentiability properties of the dual function and (ii) the exact penalty properties of the primal-dual pair. We also connect the property of finite termination with exact penalty properties of the dual pair. In order to establish these facts, we associate the primal-dual pair to a penalty map. This map, which we introduce here, is a convex and globally Lipschitz function and its epigraph encapsulates information on both primal and dual solution sets.  相似文献   

11.
A readily implementable algorithm is given for minimizing a (possibly nondifferentiable and nonconvex) locally Lipschitz continuous functionf subject to linear constraints. At each iteration a polyhedral approximation tof is constructed from a few previously computed subgradients and an aggregate subgradient, which accumulates the past subgradient information. This aproximation and the linear constraints generate constraints in the search direction finding subproblem that is a quadratic programming problem. Then a stepsize is found by an approximate line search. All the algorithm's accumulation points are stationary. Moreover, the algorithm converges whenf happens to be convex.  相似文献   

12.
We propose and study a new method, called the Interior Epigraph Directions (IED) method, for solving constrained nonsmooth and nonconvex optimization. The IED method considers the dual problem induced by a generalized augmented Lagrangian duality scheme, and obtains the primal solution by generating a sequence of iterates in the interior of the dual epigraph. First, a deflected subgradient (DSG) direction is used to generate a linear approximation to the dual problem. Second, this linear approximation is solved using a Newton-like step. This Newton-like step is inspired by the Nonsmooth Feasible Directions Algorithm (NFDA), recently proposed by Freire and co-workers for solving unconstrained, nonsmooth convex problems. We have modified the NFDA so that it takes advantage of the special structure of the epigraph of the dual function. We prove that all the accumulation points of the primal sequence generated by the IED method are solutions of the original problem. We carry out numerical experiments by using test problems from the literature. In particular, we study several instances of the Kissing Number Problem, previously solved by various approaches such as an augmented penalty method, the DSG method, as well as several popular differentiable solvers. Our experiments show that the quality of the solutions obtained by the IED method is comparable with (and sometimes favourable over) those obtained by the differentiable solvers.  相似文献   

13.
In this paper a new algorithm for minimizing locally Lipschitz functions is developed. Descent directions in this algorithm are computed by solving a system of linear inequalities. The convergence of the algorithm is proved for quasidifferentiable semismooth functions. We present the results of numerical experiments with both regular and nonregular objective functions. We also compare the proposed algorithm with two different versions of the subgradient method using the results of numerical experiments. These results demonstrate the superiority of the proposed algorithm over the subgradient method.   相似文献   

14.
In this paper, we propose a new regularized quasi-Newton method for unconstrained optimization. At each iteration, a regularized quasi-Newton equation is solved to obtain the search direction. The step size is determined by a non-monotone Armijo backtracking line search. An adaptive regularized parameter, which is updated according to the step size of the line search, is employed to compute the next search direction. The presented method is proved to be globally convergent. Numerical experiments show that the proposed method is effective for unconstrained optimizations and outperforms the existing regularized Newton method.  相似文献   

15.
An algorithm for solving nearly-separable quadratic optimization problems (QPs) is presented. The approach is based on applying a semismooth Newton method to solve the implicit complementarity problem arising as the first-order stationarity conditions of such a QP. An important feature of the approach is that, as in dual decomposition methods, separability of the dual function of the QP can be exploited in the search direction computation. Global convergence of the method is promoted by enforcing decrease in component(s) of a Fischer–Burmeister formulation of the complementarity conditions, either via a merit function or through a filter mechanism. The results of numerical experiments when solving convex and nonconvex instances are provided to illustrate the efficacy of the method.  相似文献   

16.
This paper presents a readily implementable algorithm for minimizing a locally Lipschitz continuous function that is not necessarily convex or differentiable. This extension of the aggregate subgradient method differs from one developed by the author in the treatment of nonconvexity. Subgradient aggregation allows the user to control the number of constraints in search direction finding subproblems and, thus, trade-off subproblem solution effort for rate of convergence. All accumulation points of the algorithm are stationary. Moreover, the algorithm converges when the objective function happens to be convex.  相似文献   

17.
Numerical Algorithms - A diagonal quasi-Newton updating algorithm is presented. The elements of the diagonal matrix approximating the Hessian are determined by minimizing both the size of the...  相似文献   

18.
In this paper, a method is developed for solving nonsmooth nonconvex minimization problems. This method extends the classical BFGS framework. First, we generalize the Wolfe conditions for locally Lipschitz functions and prove that this generalization is well defined. Then, a line search algorithm is presented to find a step length satisfying the generalized Wolfe conditions. Next, the Goldstein e-subgradient is approximated by an iterative method and a descent direction is computed using a positive definite matrix. This matrix is updated using the BFGS method. Finally, a minimization algorithm based on the BFGS method is described. The algorithm is implemented in MATLAB and numerical results using it are reported.  相似文献   

19.
We consider multistage stochastic optimization models containing nonconvex constraints, e.g., due to logical or integrality requirements. We study three variants of Lagrangian relaxations and of the corresponding decomposition schemes, namely, scenario, nodal and geographical decomposition. Based on convex equivalents for the Lagrangian duals, we compare the duality gaps for these decomposition schemes. The first main result states that scenario decomposition provides a smaller or equal duality gap than nodal decomposition. The second group of results concerns large stochastic optimization models with loosely coupled components. The results provide conditions implying relations between the duality gaps of geographical decomposition and the duality gaps for scenario and nodal decomposition, respectively.Mathematics Subject Classification (1991): 90C15Acknowledgments. This work was supported by the Priority Programme Online Optimization of Large Scale Systems of the Deutsche Forschungsgemeinschaft. The authors wish to thank Andrzej Ruszczyski (Rutgers University) for helpful discussions.  相似文献   

20.
For solving nonsmooth convex constrained optimization problems, we propose an algorithm which combines the ideas of the proximal bundle methods with the filter strategy for evaluating candidate points. The resulting algorithm inherits some attractive features from both approaches. On the one hand, it allows effective control of the size of quadratic programming subproblems via the compression and aggregation techniques of proximal bundle methods. On the other hand, the filter criterion for accepting a candidate point as the new iterate is sometimes easier to satisfy than the usual descent condition in bundle methods. Some encouraging preliminary computational results are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号