首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new probe for Cu(2+) based on the Cu(2+)- induced reversible ring-opening mechanism of the rhodamine spirolactam was described. It displayed a highly selective and sensitive "turn-on" fluorescent and colorimetric response toward Cu(2+).  相似文献   

2.
A new rhodamine B-based dual-function chromo- and fluorogenic probe for Cu(2+) and ClO(-) has been designed, synthesized, and characterized. The probe comprises a spectroscopic unit of rhodamine B and a Cu(2+)-specific chelating unit of pyridinecarboxamide as well as a ClO(-)-specific reactive moiety of diacylhydrazine, and is a highly selective and extremely sensitive fluorescent and colorimetric sensor for Cu(2+) and ClO(-) in different pH conditions. Compared with the reported probes for Cu(2+) or ClO(-), this is the first chemosensor based on a small molecule that can detect both Cu(2+) and ClO(-), respectively, at 1 nM level.  相似文献   

3.
We report the development of a rhodamine chromene-based fluorescence probe to monitor the intracellular Cu(2+) level in living cells. The new fluorescent probe exhibits a fluorescence response towards Cu(2+) under physiological conditions with high sensitivity and selectivity, and facilitates the naked-eye detection of Cu(2+). The fluorescence intensity was significantly increased by about 40-fold with 10 equiv. of added Cu(2+).  相似文献   

4.
A rhodamine spirolactam/2-hydrazinopyridine derivative was synthesized and characterized, which exhibited high selectivity to Cu(2+) over other metal cations. The Cu(2+) recognition of this rhodamine derivative could be detected by fluorescence spectra, absorption spectra and an obvious color change which was observed easily by naked-eyes. The binding of this rhodamine derivative to Cu(2+) is instantaneous and sensitive. Moreover, a linear relationship was found between the fluorescence intensity at 575 nm from 0.5×10(-6) M to 3.0×10(-6) M of Cu(2+) concentration, and the limit of detection (LOD) was at low concentration of 2.11×10(-8) M, this would benefit for the establishment of standard working curves in practical Cu(2+) detection. Additionally, we synthesized rhodamine spirolactam/2-aminomethylpyridine derivative and rhodamine spirolactam/phenylhydrazine derivative as analogs for elucidate the structure-recognition relationships. Finally, we prepared the test strips of rhodamine spirolactam/2-hydrazinopyridine derivative for practical chromogenic the Cu(2+) detection.  相似文献   

5.
In this study, we report a histidine-based fluorescence probe for Cu(2+) and Hg(2+), in which the amino group and imino group were modified by two common protective groups, 9-fluorenylmethoxycarbonyl and trityl group, respectively. In a water/methanol mixed solution, the probe displayed a selective fluorescence "turn-off" response to Cu(2+) when the ratio of CH(3)OH/H(2)O was higher than 1:1. Specifically, when the solvent is changed to 1:1 methanol/water, the 304 nm fluorescence peak is enhanced, while the 317 nm peak is weakened, upon addition of either Cu(2+) or Hg(2+) ions. The mechanism for such distinct responses of the probe to Cu(2+) and Hg(2+) was further clarified by using NMR and molecular simulation. The experiment results indicated that the polarity of solvent could influence the coordination mode of 1 with Cu(2+) and Hg(2+), and control the fluorescence response as a "turn-off" or ratiometric probe.  相似文献   

6.
Gong YJ  Zhang XB  Chen Z  Yuan Y  Jin Z  Mei L  Zhang J  Tan W  Shen GL  Yu RQ 《The Analyst》2012,137(4):932-938
This paper described the optimized design, synthesis and application of a novel rhodamine thiospirolactam derivative as an 'off-on' fluorescent probe for the detection of Hg(2+) in aqueous samples. The 'off-on' fluorescence and color signal change of the probe is based on an Hg(2+)-triggered domino reaction which brings on the opened-ring form of the rhodamine spirolactam to regain the conjugated system of the rhodamine skeleton. In the well designed probe, the thiospirolactam serves as both Hg(2+) binding unit and electron-defect carbon centre, a phenolic hydroxyl with very strong nucleophilicity after deprotonation is chosen as the attacking unit, and a benzene ring is introduced on the linker to afford steric effects, which benefits an efficient nucleophilic reaction, with a high sensitivity towards Hg(2+). It exhibits a stable response for Hg(2+) from 1.0 × 10(-8) to 1.0 × 10(-6) M, with a detection limit of 3.0 × 10(-9) M. The response of the probe to Hg(2+) is highly selective and pH-insensitive, with a fast response time. All these unique features make it particularly favorable for cellular Hg(2+) imaging applications. It has been preliminarily used for highly sensitive monitoring of Hg(2+) levels in living cells with satisfying resolution.  相似文献   

7.
The first novel rhodamine B based sensor, rhodamine B hydrazide methyl 5-formyl-1H-pyrrole-2-carboxylate Schiff base (2) capable of detecting both Cu(2+) and Hg(2+) using two different detection modes has been designed and synthesized. The metal ion induced optical changes of 2 were investigated in MeOH:H(2)O (3:1) HEPES buffered solution at pH 7.4. Sensor 2 exhibits selective colorimetric recognition of Cu(2+) and fluorogenic recognition of Hg(2+) with UV-vis and fluorescence spectroscopy, respectively. Moreover, both of the Cu(2+) and Hg(2+) recognition processes are proven to be hardly influenced by other coexisting metal ions.  相似文献   

8.
A rhodamine B derivative 4 containing a highly electron-rich S atom has been synthesized as a fluorescence turn-on chemodosimeter for Cu(2+). Following Cu(2+)-promoted ring-opening, redox and hydrolysis reactions, comparable amplifications of absorption and fluorescence signals were observed upon addition of Cu(2+); this suggests that chemodosimeter 4 effectively avoided the fluorescence quenching caused by the paramagnetic nature of Cu(2+). Importantly, 4 can selectively recognize Cu(2+) in aqueous media in the presence of other trace metal ions in organisms (such as Fe(3+), Fe(2+), Cu(+), Zn(2+), Cr(3+), Mn(2+), Co(2+), and Ni(2+)), abundant cellular cations (such as Na(+), K(+), Mg(2+), and Ca(2+)), and the prevalent toxic metal ions in the environment (such as Pb(2+) and Cd(2+)) with high sensitivity (detection limit < or =10 ppb) and a rapid response time (< or =1 min). Moreover, by virtue of the chemodosimeter as fluorescent probe for Cu(2+), confocal and two-photon microscopy experiments revealed a significant increase of intracellular Cu(2+) concentration and the subcellular distribution of Cu(2+), which was internalized into the living HeLa cells upon incubation in growth medium supplemented with 50 muM CuCl(2) for 20 h.  相似文献   

9.
Kim H  Lee S  Lee J  Tae J 《Organic letters》2010,12(22):5342-5345
A rhodamine triazole-based fluorescent chemosensor has been developed for the selective detection of platinum ions in aqueous solutions. The rhodamine 6G hydroxamate linked with a propargyl group is converted to the corresponding triazole by a "click" reaction. The dual binding unit composed of a hydroxamate and a triazole shows high selectivity and sensitivity toward Pt(2+) over a range of other metal ions in water. The fluorescent probe is applied to monitor cisplatin in aqueous solutions.  相似文献   

10.
Ma X  Tan Z  Wei G  Wei D  Du Y 《The Analyst》2012,137(6):1436-1439
A "turn-on" fluorescence probe for Cu(2+) detection has been reported according to a Cu(2+) triggered spirolactam ring-opening reaction. The probe is a double-responsive fluorescent and colorimetric Cu(2+)-specific sensor in aqueous solution containing 20% of acetonitrile with high selectivity and excellent sensitivity (limit of detection is 12 μg L(-1)). Furthermore, the significant color changes visible to the naked eye at the concentration of 3 μM (ca. 0.20 mg L(-1)) are about ten times lower than the WHO (World Health Organization) recommended level (2.0 mg L(-1)) for Cu(2+) ions in drinking water.  相似文献   

11.
Two new rhodamine based probes 1 and 2 for the detection of Fe(3+) were synthesized and their selectivity towards Fe(3+) ions in the presence of other competitive metal ions tested. The probe 1 formed a coloured complex with Fe(3+) as well as Cu(2+) ions and revealed the lack of adequate number of coordination sites for selective complexation with Fe(3+). Incorporation of a triazole unit to the chelating moiety of 1 resulted in the probe 2, that displayed Fe(3+) selective complex formation even in the presence of other competitive metal ions like Li(+), Na(+), K(+), Cu(2+), Mg(2+), Ca(2+), Sr(2+), Cr(3+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+), Hg(2+) and Pb(2+). The observed limit of detection of Fe(3+) ions (5 × 10(-8) M) confirmed the very high sensitivity of 2. The excellent stability of 2 in physiological pH conditions, non-interference of amino acids, blood serum and bovine serum albumin (BSA) in the detection process, and the remarkable selectivity for Fe(3+) ions permitted the use of 2 in the imaging of live fibroblast cells treated with Fe(3+) ions.  相似文献   

12.
Wang H  Li Y  Xu S  Li Y  Zhou C  Fei X  Sun L  Zhang C  Li Y  Yang Q  Xu X 《Organic & biomolecular chemistry》2011,9(8):2850-2855
A novel rhodamine-based highly sensitive and selective colorimetric off-on fluorescent chemosensor for Hg(2+) ions is designed and prepared by using the well-known thiospirolactam rhodamine chromophore and furfural hydrazone as signal-reporting groups. The photophysical characterization and Hg(2+)-binding properties of sensor RS1 in neutral N, N-dimethylformamide (DMF) aqueous solution are also investigated. The signal change of the chemosensor is based on a specific metal ion induced reversible ring-opening mechanism of the rhodamine spirolactam. The response of the chemosensor for Hg(2+) ions is instantaneous and reversible. And it successfully exhibits a remarkably "turn on" response toward Hg(2+) over other metal ions (even those that exist in high concentration). Moreover, this sensor is applied for in vivo imaging in Rat Schwann cells to confirm that RS1 can be used as a fluorescent probe for monitoring Hg(2+) in living cells with satisfying results, which further demonstrates its value of practical applications in environmental and biological systems.  相似文献   

13.
A naphthalimide-rhodamine B derivative was synthesized as a fluorescence turn-ON chemodosimeter for Sn(4+). A colour change and marked enhancement of fluorescence was found in the presence of Sn(4+), Cu(2+) and Cr(3+) due to the ring open reaction of rhodamine and a fluorescence resonance energy transfer process. Addition of the strong chelating agent ethylenediaminetetraacetic acid disodium salt (EDTA) partly released the cation from the complex with Sn(4+) and restored the yellow fluorescence. In addition, the compound can be used as a fluorescent probe for Sn(4+) in biological systems and may act as a tool with which to study the physiological functions of tin or pathogenesis in the human body.  相似文献   

14.
Here, we report a new Cu(2+)-selective fluorescent turn-on probe BODIPY-EP, in which the 2-pyridinecarboxylic acid is connected to a 6-hydroxyindole-based BODIPY platform through an ester linkage. The ester bond of BODIPY-EP is selectively hydrolyzed by the reaction with Cu(2+) under mild and neutral conditions to generate BODIPY-OH, showing strong characteristic fluorescence of BODIPY-OH. The favorable features of BODIPY-EP towards Cu(2+) include fast response, large fluorescence enhancement and high selectivity. We further demonstrated that the membrane-permeable probe reacts with intracellular Cu(2+) and exhibits bright fluorescence in living cells.  相似文献   

15.
A fluorescent probe for Cu(II) ion is presented. It is based on the rhodamine fluorophore and exhibits high selectivity and sensitivity for Cu(II) ion in aqueous methanol (2:8, v/v) at pH 7.0. The response is based on a ring opening reaction and formation of a strongly fluorescent 1:1 complex. The response is reversible and linear in the range between 50?nM and 900?nM, with a detection limit of 7.0?nM. The probe was successfully applied to fluorescent imaging of Cu(II) ions in HeLa cells.
Figure
A novel fluorescent probe 1 based on a rhodamine spirolactame derivative exhibits highly selective and sensitive recognition properties toward Cu(II) in aqueous methanol (2:8, v/v) at pH 7.0 with remarkable fluorescence enhancement and clear color change, and its high cell permeability grants its application to fluorescent imaging in living cells.  相似文献   

16.
Fluorescence-active chemosensors (L1-L4), comprising a rhodamine scaffold and a pseudo azacrown cation-binding subunit, have been proposed and characterized as a fluorescent chemosensor for Hg(2+). An on-off type fluorescent enhancement was observed by the formation of the ring-opened amide form of the rhodamine moiety, which was induced by the interactions between Hg(2+) and the chemosensor. Upon the addition of Hg(2+), an overall emission change of 350-fold was observed, and the selectivity was calculated to be 300 times higher than Cu(2+) for receptors L2-L4. A polymeric thin film can be obtained by doping poly(methyl methacrylate) or PMMA with chemosensor L2. Such a thin film sensor can be used to detect Hg(2+) with high sensitivity and can be recovered using diluted NaOH.  相似文献   

17.
Spirolactonized Si-rhodamine was prepared as a platform to construct Si-rhodamine-based probes by following the design strategy widely used in rhodamine systems. Among them, the reaction-based probe SiR-Hg was operated for NIR sensing and bioimaging of Hg(2+) in living cells based on the similar irreversible spirolactam ring-opening process to traditional rhodamine derivatives.  相似文献   

18.
A new probe/Cu(2+) complex for the detection of his-tagged protein has been developed, based on an improved probe, Dansyl-Gly-Py (1), by closely mimicing the structure of a peptide, ATCUN. In aqueous solution, 1/Cu(2+) has good selectivity to histidine and cysteine, and further can detect histidine-rich protein by releasing the quenched fluorescence of 1.  相似文献   

19.
It has recently been reported that Teflon and polyethylene (PE) if rubbed by polymethylmethacrylate (PMMA) or Nylon as well as non-rubbed PMMA and Nylon induce "redox" reactions, including those of the reduction of Pd(+2) and Cu(+2) ions. On this basis, it was deduced that these dielectric materials may hold ?10(13)-10(14) of "hidden" electrons cm(-2), a value at least three orders of magnitude higher than the charge that a dielectric surface can accumulate without being discharged in air. The "hidden" electrons were termed "cryptoelectrons". In variance to these reports, we offer here an alternative interpretation. Our model is supported by X-ray photoelectron spectroscopy, contact angle and vibrating electrode (modified Kelvin probe) measurements performed on representative examples. Rubbing of the polymers was found to transfer polymer fragments between the rubbed surfaces altering their physical properties. The transferred polymer fragments promote adsorption of Cu(2+) and Pd(2+) ions. It was found that Teflon and PE rubbed with PMMA and Nylon, and non-rubbed PMMA and non-rubbed Nylon do not induce "redox" reactions of Cu(2+) and Pd(2+) ions but adsorb these ions on their surfaces. Furthermore, the earlier reported reduction of Pd(2+) to Pd(0) by electrons, as detected by catalytic activity of Pd(0) in a Cu-plating bath, can be alternatively explained by reduction of adsorbed Pd(2+) by the reducing agents of the bath itself. Based on these findings, we support the hypothesis that charging of dielectric polymers is due to ions or free radicals rather than electrons and there is no evidence to invoke a hypothesis of "cryptoelectrons".  相似文献   

20.
On the basis of rhodamine, a versatile trifunctional chemosensor RP has been synthesized. It can selectively and sensitively recognize Cu(2+) and Zn(2+) in different solutions. Based on the zinc-containing [RP@Zn(2+)] complex, it shows highly selective recognition for His/Cys. Fluorescent imaging of Zn(2+) in living cells was also obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号