首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Potential energy (PE) curves for the intramolecular proton transfer in the ground (GSIPT) and excited (ESIPT) states of o-hydroxybenzaldehyde (OHBA) were studied using DFT-B3LYP/6-31G(d) and TD-DFT-B3LYP/6-31G(d) level of theory, respectively. Our calculations suggest the non-viability of ground state intramolecular proton transfer in this compound. Excited states PE calculations support the ESIPT process in OHBA. The contour PE diagram and the variation of oscillator strength along the proton transfer co-ordinate support the dual emission in OHBA. Our calculations also support the experimental observations of Nagaoka et al. [S. Nagaoka, U. Nagashima, N. Ohta, M. Fujita, T. Takemura, J. Phys. Chem. 92 (1988) 166], i.e. normal emission of the title compound comes from S(2) state and the red-shifted proton transfer band appears from the S(1) state. ESIPT process has also been explained in terms of HOMO and LUMO electron density of the enol and keto tautomer of OHBA and from the potential energy surfaces.  相似文献   

2.
In commonly studied GFP chromophore analogues such as 4-(4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (PHBDI), the dominant photoinduced processes are cis-trans isomerization and subsequent S(1) → S(0) decay via a conical intersection characterized by a highly twisted double bond. The recently synthesized 2-hydroxy-substituted isomer (OHBDI) shows an entirely different photochemical behavior experimentally, since it mainly undergoes ultrafast intramolecular excited-state proton transfer, followed by S(1) → S(0) decay and ground-state reverse hydrogen transfer. We have chosen 4-(2-hydroxybenzylidene)-1H-imidazol-5(4H)-one (OHBI) to model the gas-phase photodynamics of such 2-hydroxy-substituted chromophores. We first use various electronic structure methods (DFT, TDDFT, CC2, DFT/MRCI, OM2/MRCI) to explore the S(0) and S(1) potential energy surfaces of OHBI and to locate the relevant minima, transition state, and minimum-energy conical intersection. These static calculations suggest the following decay mechanism: upon photoexcitation to the S(1) state, an ultrafast adiabatic charge-transfer induced excited-state intramolecular proton transfer (ESIPT) occurs that leads to the S(1) minimum-energy structure. Nearby, there is a S(1)/S(0) minimum-energy conical intersection that allows for an efficient nonadiabatic S(1) → S(0) internal conversion, which is followed by a fast ground-state reverse hydrogen transfer (GSHT). This mechanism is verified by semiempirical OM2/MRCI surface-hopping dynamics simulations, in which the successive ESIPT-GSTH processes are observed, but without cis-trans isomerization (which is a minor path experimentally with less than 5% yield). These gas-phase simulations of OHBI give an estimated first-order decay time of 476 fs for the S(1) state, which is larger but of the same order as the experimental values measured for OHBDI in solution: 270 fs in CH(3)CN and 230 fs in CH(2)Cl(2). The differences between the photoinduced processes of the 2- and 4-hydroxy-substituted chromophores are attributed to the presence or absence of intramolecular hydrogen bonding between the two rings.  相似文献   

3.
Ab initio surface-hopping dynamics calculations have been performed to simulate the intramolecular excited state hydrogen transfer dynamics of ortho-nitrobenzaldehyde (o-NBA) in the gas phase from the electronic S(1) excited state. Upon UV excitation, the hydrogen is transferred from the aldehyde substituent to the nitro group, generating o-nitrosobenzoic acid through a ketene intermediate. The semiclassical propagations show that the deactivation from the S(1) is ultrafast, in agreement with the experimental measurements, which detect the ketene in less than 400 fs. The trajectories show that the deactivation mechanism involves two different conical intersections. The first one, a planar configuration with the hydrogen partially transferred, is responsible for the branching between the formation of a biradical intermediate and the regeneration of the starting material. The conversion of the biradical to the ketene corresponds to the passage through a second intersection region in which the ketene group is formed.  相似文献   

4.
5.
We have unraveled the effects of an amino substituent in the ortho position on the excited-state dynamics of 4-nitropyridine N-oxide by studying the picosecond fluorescence kinetics and femtosecond transient absorption of a newly synthesized compound, 2-butylamino-6-methyl-4-nitropyridine N-oxide, and by quantum chemical calculations. Similar to the parent compound, the S(1) state of the target molecule has significant charge-transfer character and shows a large (approximately 8000 cm(-1)) static Stokes shift in acetonitrile. Analysis of the experimental and the theoretical results leads, however, to a new scenario in which this intramolecular charge transfer triggers in polar, aprotic solvents an ultrafast (around 100 fs) intramolecular proton transfer between the amino and the N-O group. The electronically excited N-OH tautomer is subsequently subject to solvent relaxation and decays with a lifetime of approximately 150 ps to the ground state.  相似文献   

6.
The short-time photodynamics (1 ps) of formamide in its low-lying singlet excited n(O)-pi(*) and pi-pi(*) states have been investigated by the direct trajectory surface-hopping method based on multiconfigurational ab initio calculations. The simulations showed that in both states, the primary deactivation process is C-N bond dissociation. In the ground state, the energy is transferred to (a) translational motion of the HCO and NH(2) fragments, (b) additional C-H dissociation from the vibrationally hot HCO fragment, or (c) formation of NH(3) and CO. In addition to the C-N dissociation pathway, C-O bond fission is found to be an additional primary deactivation path in the pi-pi(*) dynamics. From fractional occupations of trajectories, lifetimes of formamide were estimated: tau(S(1))=441 fs and tau(S(2))=66 fs.  相似文献   

7.
8.
势能面交叉引起的非绝热过程广泛存在于光化学和光物理中。对这一过程进行描述是理论化学的重要挑战之一。非绝热过程涉及原子核与电子之间的耦合运动,因此量子化学的基本假设之一"玻恩-奥本海默"近似被打破,所以对其进行描述需要发展新的动力学理论方法。在这些方法中,Tully发展的最少轨线面跳跃方法凭借易于程序化、便于计算等优点已经发展成为处理非绝热问题的主要动力学方法之一。其中原子核以经典的方式在单一势能面上进行演化,电子以量子的方式沿着同一轨线进行演化。在整个演化过程中,非绝热跃迁通过轨线在不同势能面间的跃迁来描述,其中跳跃发生的几率与电子的演化有关。如果将该方法与从头算直接动力学相结合,可以在全原子水平上研究实际分子体系的非绝热动力学,给出其激发态寿命、非绝热动力学中分子的主要运动方式、反应通道以及分支比等重要信息。本文旨在讨论最少面跳跃直接动力学方法研究非绝热问题的一些进展,包括动力学基本理论,特别关注将最少面跳跃方法和直接动力学结合的数值实现细节,同时讨论该方法在研究实际体系当中的一些应用,并对轨线面跳跃方法下一步发展的一些方向进行合理的展望。  相似文献   

9.
The dynamics of the excited-state proton transfer (ESPT) in a cluster of 2-(2'-hydroxyphenyl)benzothiazole (HBT) and hydrogen-bonded water molecules was investigated by means of quantum chemical simulations. Two different enol ground-state structures of HBT interacting with the water cluster were chosen as initial structures for the excited-state dynamics: (i) an intramolecular hydrogen-bonded structure of HBT and (ii) a cluster where the intramolecular hydrogen bond in HBT is broken by intermolecular interactions with water molecules. On-the-fly dynamics simulations using time-dependent density functional theory show that after photoexcitation to the S(1) state the ESPT pathway leading to the keto form strongly depends on the initial ground state structure of the HBT-water cluster. In the intramolecular hydrogen-bonded structures direct excited-state proton transfer is observed within 18 fs, which is a factor two faster than proton transfer in HBT computed for the gas phase. Intermolecular bonded HBT complexes show a complex pattern of excited-state proton transfer involving several distinct mechanisms. In the main process the tautomerization proceeds via a triple proton transfer through the water network with an average proton transfer time of approximately 120 fs. Due to the lack of the stabilizing hydrogen bond, intermolecular hydrogen-bonded structures have a significant degree of interring twisting already in the ground state. During the excited state dynamics, the twist tends to quickly increase indicating that internal conversion to the electronic ground state should take place at the sub-picosecond scale.  相似文献   

10.
11.
Bromoacetyl chloride photodissociation has been interpreted as a paradigmatic example of a process in which nonadiabatic effects play a major role. In molecular beam experiments by Butler and co-workers [J. Chem. Phys. 95, 3848 (1991); J. Chem. Phys. 97, 355 (1992)], BrCH2C(O)Cl was prepared in its ground electronic state (S0) and excited with a laser at 248 nm to its first excited singlet state (S1). The two main ensuing photoreactions are the ruptures of the C-Cl bond and of the C-Br bond. A nonadiabatic model was proposed in which the C-Br scission is strongly suppressed due to nonadiabatic recrossing at the barrier formed by the avoided crossing between the S1 and S2 states. Recent reduced-dimensional dynamical studies lend support to this model. However, another interpretation that has been given for the experimental results is that the reduced probability of C-Br scission is a consequence of incomplete intramolecular energy redistribution. To provide further insight into this problem, we have studied the energetically lowest six singlet electronic states of bromoacetyl chloride by using an ab initio multiconfigurational perturbative electronic structure method. Stationary points (minima and saddle points) and minimum energy paths have been characterized on the S0 and S1 potential energy surfaces. The fourfold way diabatization method has been applied to transform five adiabatic excited electronic states to a diabatic representation. The diabatic potential energy matrix of the first five excited singlet states has been constructed along several cuts of the potential energy hypersurfaces. The thermochemistry of the photodissociation reactions and a comparison with experimental translational energy distributions strongly suggest that nonadiabatic effects dominate the C-Br scission, but that the reaction proceeds along the energetically allowed diabatic pathway to excited-state products instead of being nonadiabatically suppressed. This conclusion is also supported by the low values of the diabatic couplings on the C-Br scission reaction path. The methodology established in the present study will be used for the construction of global potential energy surfaces suitable for multidimensional dynamics simulations to test these preliminary interpretations.  相似文献   

12.
Recently, we have proposed a scheme for the calculation of nonadiabatic couplings and nonadiabatic coupling vectors within linear response time-dependent density functional theory using a set of auxiliary many-electron wavefunctions [I. Tavernelli, E. Tapavicza, and U. Rothlisberger, J. Chem. Phys. 130, 124107 (2009)]. As demonstrated in a later work [I. Tavernelli, B. F. E. Curchod, and U. Rothlisberger, J. Chem. Phys. 131, 196101 (2009)], this approach is rigorous in the case of the calculation of nonadiabatic couplings between the ground state and any excited state. In this work, we extend this formalism to the case of coupling between pairs of singly excited states with the same spin multiplicity. After proving the correctness of our formalism using the electronic oscillator approach by Mukamel and co-workers [S. Tretiak and S. Mukamel, Chem. Rev. (Washington, D.C.) 102, 3171 (2002)], we tested the method on a model system, namely, protonated formaldimine, for which we computed S(1)/S(2) nonadiabatic coupling vectors and compared them with results from high level (MR-CISD) electronic structure calculations.  相似文献   

13.
The theory of IR-X-ray pump-probe spectroscopy beyond the Born-Oppenheimer approximation is developed and applied to the study of the dynamics of intramolecular proton transfer in glyoxalmonoxime leading to the formation of the tautomer 2-nitrosoethenol. Due to the IR pump pulses the molecule gains sufficient energy to promote a proton to a weakly bound well. A femtosecond X-ray pulse snapshots the wave packet route and, hence, the dynamics of the proton transfer. The glyoxalmonoxime molecule contains two chemically nonequivalent oxygen atoms that possess distinct roles in the hydrogen bond, a hydrogen donor and an acceptor. Core ionizations of these form two intersecting core-ionized states, the vibronic coupling between which along the OH stretching mode partially delocalizes the core hole, resulting in a hopping of the core hole from one site to another. This, in turn, affects the dynamics of the proton transfer in the core-ionized state. The quantum dynamical simulations of X-ray photoelectron spectra of glyoxalmonoxime driven by strong IR pulses demonstrate the general applicability of the technique for studies of intramolecular proton transfer in systems with vibronic coupling.  相似文献   

14.
A rigorous and practical approach for simulations of nonadiabatic quantum dynamics is introduced. The algorithm involves a natural extension of the matching-pursuitsplit-operator Fourier-transform (MPSOFT) method [Y. Wu and V. S. Batista, J. Chem. Phys. 121, 1676 (2004)] recently developed for simulations of adiabatic quantum dynamics in multidimensional systems. The MPSOFT propagation scheme, extended to nonadiabatic dynamics, recursively applies the time-evolution operator as defined by the standard perturbation expansion to first-, or second-order, accuracy. The expansion is implemented in dynamically adaptive coherent-state representations, generated by an approach that combines the matching-pursuit algorithm with a gradient-based optimization method. The accuracy and efficiency of the resulting propagation method are demonstrated as applied to the canonical model systems introduced by Tully for testing simulations of dual curve-crossing nonadiabatic dynamics.  相似文献   

15.
The two structurally related Schiff bases, 2-hydroxynaphthylidene-(8-aminoquinoline) (HNAQ) and 2-hydroxynaphthylidene-1(')-naphthylamine (HNAN), were studied by means of steady-state and time resolved optical spectroscopies as well as time-dependent density functional theory (TDDFT) calculations. The first one, HNAQ, is stable as a keto tautomer in the ground state and in the excited state in solutions, therefore it was used as a model of a keto tautomer of HNAN which exists mainly in its enol form in the ground state at room temperature. Excited state intramolecular proton transfer in the HNAN molecule leads to a very weak (quantum yield of the order of 10(-4)) strongly Stokes-shifted fluorescence. The characteristic time of the proton transfer (about 30 fs) was estimated from femtosecond transient absorption data supported by global analysis and deconvolution techniques. Approximately 35% of excited molecules create a photochromic form whose lifetime was beyond the time window of the experiment (2 ns). The remaining ones reach the relaxed S(1) state (of a lifetime of approximately 4 ps), whose emission is present in the decay associated difference spectra. Some evidence for the back proton transfer from the ground state of the keto form with the characteristic time of approximately 13 ps was also found. The energies and orbital characteristics of main electronic transitions in both molecules calculated by TDDFT method are also discussed.  相似文献   

16.
A polarizable, flexible model for ethanol is obtained based on an extensive series of B3LYP/6-311++G(d,p) calculations and molecular dynamics simulations. The ethanol model includes electric-field dependence in both the atomic charges and the intramolecular degrees of freedom. Field-dependent intramolecular potentials have been attempted only once previously, for OH and HH stretches in water [P. Cicu et al., J. Chem. Phys. 112, 8267 (2000)]. The torsional potential involving the hydrogen-bonding hydrogen in ethanol is found to be particularly field sensitive. The methodology for developing field-dependent potentials can be readily generalized to other molecules and is discussed in detail. Molecular dynamics simulations of bulk ethanol are performed and the results are assessed based on comparisons with the self-diffusion coefficient [N. Karger et al., J. Chem. Phys. 93, 3437 (1990)], dielectric constant [J. T. Kindt and C. A. Schmuttenmaer, J. Phys. Chem. 100, 10373 (1996)], enthalpy of vaporization [R. C. Wilhoit and B. J. Zwolinski, J. Phys. Chem. Ref. Data, Suppl. 2, 2 (1973)], and experimental interatomic distributions [C. J. Benmore and Y. L. Loh, J. Chem. Phys. 112, 5877 (2000)]. The simultaneous variation of the atomic charges and the intramolecular potentials requires modified equations of motion and a multiple time step algorithm has been implemented to solve these equations. The article concludes with a discussion of the bulk structure and properties with an emphasis on the hydrogen bonding network.  相似文献   

17.
Full-dimensional (multilayer) multi-configurational time-dependent Hartree calculations studying the intramolecular proton transfer in malonaldehyde based on a recent potential energy surface (PES) [Wang et al., J. Chem. Phys. 128, 224314 (2008)] are presented. The most accurate calculations yield a ground state tunneling splitting of 23.8 cm(-1) and a zero point energy of 14,678 cm(-1). Extensive convergence tests indicate an error margin of the quantum dynamics calculations for the tunneling splitting of about 0.2 cm(-1). These results are to be compared with the experimental value of the tunneling splitting of 21.58 cm(-1) and results of Monte Carlo calculations of Wang et al. on the same PES which yielded a zero point energy of 14,677.9 cm(-1) with statistical errors of 2-3 cm(-1) and a tunneling splitting of 21.6 cm(-1). The present data includes contributions resulting from the vibrational angular momenta to the tunneling splitting and the zero point energy of 0.2 cm(-1) and 2.4 cm(-1), respectively, which have been computed using a perturbative approach.  相似文献   

18.
The steady‐state spectroscopy of 2‐(N‐methylacetimidoyl)‐1‐naphthol (MAN) reveals composite absorption and emission spectra from 298 to 193 K in hexane. The ground electronic state (So) absorption can be assigned to the sum of three molecular structures: the OH normal tautomer, and two NH proton transfer tautomers. The NH‐structures are the most stable ones in equilibrium with the OH tautomer for the S0 state. On photoexcitation of the OH tautomer the excited state intramolecular proton transfer is undergone, and the corresponding NH emission is monitored at 470 nm. On photoexcitation of the NH tautomers the previous emission is monitored in addition to another emission at 600 nm, which is ascribed to intramolecular hydrogen‐bonded (IHB) nonplanar NH structures generated from the IHB planar NH tautomers. A Jab?oński diagram is introduced which gathers all the experimental evidence as well as the theoretical calculations executed at the DFT‐B3LYP and TD‐DFT levels. The MAN molecule is compared with other analogs such as 1‐hydroxy‐2‐acetonaphthone (HAN), 2‐(1?‐hydroxy‐2?‐naphthyl)benzimidazole and methyl 1‐hydroxy‐2‐naphthoate to validate the theoretical calculations. Photoexcitation of MAN generates two emission bands at longer wavelengths than that of the emission band of HAN. The MAN molecule exhibits a great photostability in hydrocarbon solution which depends on the photophysics of the NH tautomers (keto forms).  相似文献   

19.
Compared with green fluorescence protein (GFP) chromophores, the recently synthesized blue fluorescence protein (BFP) chromophore variant presents intriguing photochemical properties, for example, dual fluorescence emission, enhanced fluorescence quantum yield, and ultra‐slow excited‐state intramolecular proton transfer (ESIPT; J. Phys. Chem. Lett., 2014 , 5, 92); however, its photochemical mechanism is still elusive. Herein we have employed the CASSCF and CASPT2 methods to study the mechanistic photochemistry of a truncated BFP chromophore variant in the S0 and S1 states. Based on the optimized minima, conical intersections, and minimum‐energy paths (ESIPT, photoisomerization, and deactivation), we have found that the system has two competitive S1 relaxation pathways from the Franck–Condon point of the BFP chromophore variant. One is the ESIPT path to generate an S1 tautomer that exhibits a large Stokes shift in experiments. The generated S1 tautomer can further evolve toward the nearby S1/S0 conical intersection and then jumps down to the S0 state. The other is the photoisomerization path along the rotation of the central double bond. Along this path, the S1 system runs into an S1/S0 conical intersection region and eventually hops to the S0 state. The two energetically allowed S1 excited‐state deactivation pathways are responsible for the in‐part loss of fluorescence quantum yield. The considerable S1 ESIPT barrier and the sizable barriers that separate the S1 tautomers from the S1/S0 conical intersections make these two tautomers establish a kinetic equilibrium in the S1 state, which thus results in dual fluorescence emission.  相似文献   

20.
The influence of H‐bond geometry on the dynamics of excited state intramolecular proton transfer (ESIPT) and photoinduced tautomerization in a series of phenol‐quinoline compounds is investigated. Control over the proton donor–acceptor distance (dDA) and dihedral angle between the proton donor–acceptor subunits is achieved by introducing methylene backbone straps of increasing lengths to link the phenol and quinoline. We demonstrate that a long dDA correlates with a higher barrier for ESIPT, while a large dihedral angle opens highly efficient deactivation channels after ESIPT, preventing the formation of the fully relaxed tautomer photoproduct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号