首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composites of Nafion, COOH-capped CdSe, and self-doped polyaniline (SPAN) were used to prepare novel chemical modified glassy carbon electrodes (Nafion/CdSe/SPAN/GCE). The electrocatalytic activities of the modified GCE to the redox reactions of dopamine (DA), uric acid (UA), and ascorbic acid (AA) were investigated by cyclic voltammetry (CV). CV curves revealed that the electrocatalytic activities of Nafion/CdSe/SPAN/GCE to oxidations of the analytes in solution of pH 7 were in the order of DA?>?UA?>?AA. This order was consistent with the strong-to-low extent of interactions between the modified GCE and the analytes. These interactions were consistent with the observations that the oxidation rate of DA followed a diffusion-controlled process whereas that of UA followed a surface adsorption-controlled process. The composites of casting at higher pH levels were found to exhibit better CdSe and SPAN dispersions in films and higher electrocatalytic activities. CdSe and SPAN exhibited insignificant synergistic effects on the oxidations of DA when cast from Nafion solutions of both low and high pHs whereas CdSe and SPAN exhibited much synergistic effects on the oxidations of UA when cast from the Nafion solution of high pH at 12.  相似文献   

2.
An optimized synthesis route was applied for controlling the preparation of CdSe quantum dots (QDs) in an aqueous solution. Some key factors which influencing the properties of CdSe QDs, such as initial pH, stabilizers, ratio of precursor, etc. were investigated. The size, shape, crystal structure, and optical property of CdSe QDs were also characterized by TEM, XRD, UV-Vis, and fluorescence (FL) spectra. The result showed that high-quality cubic CdSe QDs with 3 nm were obtained. The experiments also confirmed that thioglycolic acid (TGA), under the conditions of weak acid, is a better stabilizer than others. The ratio of [Cd2+] to [SeSO3 2?] played an important role in the formation of CdSe QDs. The mechanisms about the influence factors were also presented.  相似文献   

3.
Size dependence of spin dynamics in colloidal CdSe quantum dots (QDs) are investigated with circularly polarized pump-probe transmission spectroscopy at room temperature. The excitation energy is tuned to resonance with the lowest exciton (1S(h)1S(e)) energy of the CdSe QDs. The exciton spin dynamics of CdSe QD with the diameter of 5.2 nm shows monoexponential decay with a typical time constant of about 1-3 ps depending on the excitation energy. For the cases of CdSe QDs with smaller size (with the diameter of 4.0 and 2.4 nm), the exciton spin relaxation shows biexponential decay, a fast component with time constant of several ps and a slow one with time constant of hundreds of ps to nanosecond time scale. The fast spin relaxation arises from the bright-dark transition, i.e., J = ±1 ? -/+2 transition. This process is dominated by the hole spin flips, while the electron spin conserves. The slow spin relaxation is attributed to the intralevel exciton transitions (J = ±1 ? -/+1 transition), which is relevant to the electron spin flip. Our results indicate that the exciton spin relaxation pathways in CdSe QD are controllable by monitoring the particle size, and polarized pump-probe spectroscopy is proved to be a sensitive method to probe the exciton transition among the fine structures.  相似文献   

4.
ZnS/CdSe core‐shell and wire‐coil nanowire heterostructures have been synthesized by chemical vapor deposition assisted with pulsed laser ablation. Measurements from high‐resolution transmission electron microscopy and selected area electron diffraction have revealed that both ZnS/CdSe core‐shell and wire‐coil nanowires are of single‐crystalline hexagonal wurtzite structures and grow along the [0001] direction. While the lattice parameters of ZnS and CdSe in the core‐shell nanowires are nearly equal to those of bulk ZnS and CdSe, change of the lattice parameters in the CdSe‐coil is attributed to the doping of Zn into CdSe, resulting in the relaxation of compressive strain at the interface between CdSe‐coil and ZnS‐wire. Composition variation across the interfacial regions in the ZnS/CdSe nanowire heterostructures ranges only 10–15 nm despite the pronounced lattice mismatch between ZnS and CdSe by ?11%. Growth mechanisms of the ZnS/CdSe nanowire heterostructures are discussed.  相似文献   

5.
A novel CdSe/NiO heteroarchitecture was designed, prepared, and used as a photocathode for hydrogen generation from water. The composite films were structurally, optically, and photoelectrochemically characterized. The deposition of CdSe on the NiO film enhanced light harvesting in the visible‐light region and photoelectrochemical properties. Moreover, the CdSe/NiO photoelectrode showed superior stability both in nitrogen‐saturated and air‐saturated neutral environments. The CdSe/NiO photoelectrode after MoS2 modification retained the stability of the CdSe/NiO electrode and exhibited higher photocatalytic and photoelectrochemical performances than the unmodified CdSe/NiO electrode. In pH 6 buffer solution, an average hydrogen‐evolution rate of 0.52 μmol h?1 cm?2 at ?0.131 V (versus reversible hydrogen electrode, RHE) was achieved on a MoS2/CdSe/NiO photocathode, with almost 100 % faradaic efficiency.  相似文献   

6.
A nanocomposite of CdSe quantum dots with nitrogen‐doped carbon nanotubes was prepared for enhancing the electrochemiluminescent (ECL) emission of quantum dots. With hydrogen peroxide as co‐reactant, the nanocomposite modified electrode showed a cathodic ECL emission with a starting potential of ?0.97 V (vs. Ag/AgCl) in phosphate buffer solution, which was five‐times stronger than that from pure CdSe quantum dots and three‐times stronger than that from CdSe quantum dots composited with carbon nanotubes. The latter showed a starting potential of ?1.19 V. This result led to a sensitive ECL sensing of hydrogen peroxide with good stability, acceptable reproducibility and a detection limit down to 2.1×10?7 mol L?1. Nitrogen‐doped carbon nanotubes could be used as a good material for the construction of sensitive ECL biosensors for chemical and biochemical analysis.  相似文献   

7.
The key to utilizing quantum dots (QDs) as lasing media is to effectively reduce non‐radiative processes, such as Auger recombination and surface trapping. A robust strategy to craft a set of CdSe/Cd1?xZnxSe1?ySy/ZnS core/graded shell–shell QDs with suppressed re‐absorption, reduced Auger recombination rate, and tunable Stokes shift is presented. In sharp contrast to conventional CdSe/ZnS QDs, which have a large energy level mismatch between CdSe and ZnS and thus show strong re‐absorption and a constrained Stokes shift, the as‐synthesized CdSe/Cd1?xZnxSe1?ySy/ZnS QDs exhibited the suppressed re‐absorption of CdSe core and tunable Stokes shift as a direct consequence of the delocalization of the electron wavefunction over the entire QD. Such Stokes shift‐engineered QDs with suppressed re‐absorption may represent an important class of building blocks for use in lasers, light emitting diodes, solar concentrators, and parity‐time symmetry materials and devices.  相似文献   

8.
We report on a novel immunoassay for porcine pseudorabies virus (PRV) antibody that is based on fluorescence signal amplification induced by silver(I) ion exchange in CdSe nanocrystals. An antigen-antibody-secondary antibody sandwich structure was first formed from PRV, PRV antibody, and CdSe-labeled rabbit anti-pig antibody. Then, the Cd(II) ions in the CdSe labels were released by a cation exchange reaction with Ag(I). Released Cd(II) was finally quantified using the sensitive fluorescent probe Rhodamine 5 N. Due to this signal amplification, the sensitivity and linear range of the immunoassay were largely improved (compared to the traditional ELISA) in having a limit of detection as low as 1.2 ng?mL?1 of PRV antibody and a linear range from 2.44 to 312 ng?mL?1. The successful determination of PRV antibody in pig serum samples is proof for the utility of the method.
Figure
A simple, rapid and sensitive method for the detection of PRV antibody through the fluorescence signal amplification caused by cation-exchange in CdSe NCs was reported. The CdSe NCs labeled rabbit anti-pig IgG was used to capture the PRV antibody. After the immunoreaction, the Cd2+ in the CdSe labels was completely replaced by the cation-exchange reaction with Ag+. Then Cd2+sensitive fluorescence indicator Rhod-5 N was added to bind with Cd2+ and caused the fluorescence signal enhance substantially. Thus a novel method for rapid and sensitive detection of porcine pseudorabies based on the fluorescence signal amplification was developed.  相似文献   

9.
PbS electrode with high catalytic activity to Sn 2? reduction certificated by the measurements of electrochemical impedance spectroscopy and cyclic voltammetry was prepared by a simple method. The high catalytic activity makes it be a low-cost alternative counter electrode to platinum (Pt) to be used in quantum dots-sensitized solar cells (QDSSCs) based on polysulfide electrolyte. The photovoltaic performance enhancement of the quantum dots (QDs)-sensitized semiconductor thin films due to the PbS counter electrode was evaluated by fabricating QDSSCs based on CdSe QDs-sensitized ZnO (SnO2) thin film. CdSe QDs-sensitized ZnO thin film has the lower internal total series resistance and electron transmission time, the higher electron lifetime and electron collection efficiency than the CdSe QDs-sensitized SnO2 thin film. Replacing the Pt counter electrode with the PbS counter electrode leads to more improvement on the short circuit photocurrent density for QDSSC based on the ZnO thin film than the SnO2 thin film. Therefore, the process to limit the photovoltaic performance of CdSe QDs-sensitized solar cell and the possible way to improve the photovoltaic performance were analyzed.  相似文献   

10.
Two distinct morphologies of hexylselenophene-hexylthiophene rod-rod block copolymer films can be prepared depending on the molecular weight of the sample (see picture: left M(n) =12.9, right M(n) =3.9?kg?mol(-1) ). These polymers can be used to organize spherical CdSe nanocrystals (yellow) into either dispersed or aligned hierarchical structures. Scale bars: 200?nm.  相似文献   

11.
The photophysical properties of CdSe and ZnS(CdSe) semiconductor quantum dots in nonpolar and aqueous solutions were examined with steady-state (absorption and emission) and time-resolved (time-correlated single-photon-counting) spectroscopy. The CdSe structures were prepared from a single CdSe synthesis, a portion of which were ZnS-capped, thus any differences observed in the spectral behavior between the two preparations were due to changes in the molecular shell. Quantum dots in nonpolar solvents were surrounded with a trioctylphosphine oxide (TOPO) coating from the initial synthesis solution. ZnS-capped CdSe were initially brighter than bare uncapped CdSe and had overall faster emission decays. The dynamics did not vary when the solvent was changed from hexane to dichloromethane; however, replacement of the TOPO cap by pyridine affected CdSe but not ZnS(CdSe). CdSe was then solubilized in water with mercapto-acetic acid or dihydrolipoic acid, whereas ZnS(CdSe) could be solubilized only with dihydrolipoic acid. Both solubilization agents quenched the nanocrystal emission, though with CdSe the quenching was nearly complete. Additional quenching of the remaining emission was observed when the redox-active molecule adenine was conjugated to the water-soluble CdSe but was not seen with ZnS(CdSe). The emission of aqueous CdSe could be enhanced under prolonged exposure to room light and resulted in a substantial increase of the emission lifetimes; however, the enhancement occurred concurrently with precipitation of the nanocrystals, which was possibly caused by photocatalytic destruction of the mercaptoacetic acid coating. These results are the first presented on aqueous CdSe quantum dot structures and are presented in the context of designing better, more stable biological probes.  相似文献   

12.
The interaction between CdSe quantum dots (QDs) and hemoglobin (Hb) was investigated by ultraviolet and visible (UV-vis) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and fluorescence (FL) spectroscopy. The intensity of UV-vis absorption spectrum of a mixture of CdSe QDs and Hb was obviously changed at the wavelength of 406nm at pH 7.0, indicating that CdSe QDs could bind with Hb. The influences of some factors on the interactions between CdSe QDs and Hb were studied in detail. The binding molar ratio of CdSe QDs and Hb was 12:1 by a mole-ratio method. The mechanism of the interaction between CdSe QDs and Hb was also discussed.  相似文献   

13.
We report a new green synthetic route of CdSe and core-shell CdSe/CdS nanoparticles (NPs) in aqueous solutions. This route is performed under water-bath temperature, using Se powder as a selenium source to prepare CdSe NPs, and H(2)S generated by the reaction of Na(2)SH(2)SO(4) as a sulfur source to synthesize core-shell CdSe/CdS NPs at 25-35 degrees C. The synthesis time of every step is only 20 min. After illumination with ambient natural light, photoluminescence (PL) intensities of CdSe NPs enhanced up to 100 times. The core-shell CdSe/CdS NPs have stronger photoactive luminescence with quantum yields over 20%. The obtained CdSe NPs exhibit a favorable narrow PL band (FWHM: 50-37 nm) with increasing molar ratio of Cd/Se from 4:1 to 10:1 at pH 9.1 in the crude solution, whereas PL band of corresponding CdSe/CdS NPs is slightly narrower. The emission maxima of nanocrystals can be tuned in a wider range from 492 to 592 nm in water by changing synthesis temperature of CdSe core than those reported previously. The resulting new route is of particular interest as it uses readily-available reagents and simple equipment to synthesize high-quality water-soluble CdSe and CdSe/CdS nanocrystals.  相似文献   

14.
This paper describes the synthesis of core-shell CdSe/CdS quantum dots (QDs) in aqueous solution by a simple photoassisted method. CdSe was prepared from cadmium nitrate and 1,1-dimethylselenourea precursors under illumination for up to 3 h using a pulsed Nd:YAG laser at 532 nm. The effects that the temperature and the laser irradiation process have on the synthesis of CdSe were monitored by a series of experiments using the precursors at a Cd:Se concentration ratio of 4. Upon increasing the temperature (80-140 degrees C), the size of the CdSe QDs increases and the time required for reaching a maximum photoluminescence (PL) is shortened. Although the as-prepared CdSe QDs possess greater quantum yields (up to 0.072%) compared to those obtained by microwave heating (0.016%), they still fluoresce only weakly. After passivation of CdSe (prepared at 80 degrees C) by CdS using thioacetamide as the S source (Se:S concentration ratio of 1) at 80 degrees C for 24 h, the quantum yield of the core-shell CdSe/CdS QDs at 603 nm is 2.4%. Under UV irradiation of CdSe/CdS for 24 h using a 100-W Hg-Xe lamp, the maximum quantum yield of the stable QDs is 60% at 589 nm. A small bandwidth (W1/2 < 35 nm) indicates the narrow size distribution of the as-prepared core-shell CdSe/CdS QDs. This simple photoassisted method also allows the preparation of differently sized (3.7-6.3-nm diameters) core-shell CdSe/CdS QDs that emit in a wide range (from green to red) when excited at 480 nm.  相似文献   

15.
In this work, the role of conducting [poly (p-phenylinevinylene) (PPV)] and nonconducting (polystyrene) polymers on the properties of their respective composites with CdSe quantum dots of varied sizes has been investigated. The emission and structural properties of polymer–CdSe composites are found to be dependent on the crystallite size and morphology of CdSe nanocrystallites. Smaller CdSe quantum dots (size, ∼5 nm) ensures efficient charge transfer process across polymer–CdSe interface as evident by almost complete quenching of photoluminescence (PL) emission as compared to larger CdSe quantum dots (size, ∼7 nm). Presence of residual trioctylphosphine (TOP)/ tri-n-octylphosphine-oxide (TOPO) species and agglomeration of particles act as a hindrance for quenching of emission and hence charge transfer for larger CdSe nanocrystallites. Emission studies indicated an increased conjugation length for PPV polymers in different solvents (toluene, pyridine) and in solid state. Nonconducting polymer polystyrene shows charge transfer across polymer–CdSe interface as well. However, polystyrene polymer has a shorter chain length, which ensures maximum coverage on the surface of CdSe nanocrystallites and provides better photostability to CdSe QDs within the polymer matrix as compared to that for PPV–CdSe nanocomposites.  相似文献   

16.
CdSe纳米线阵列的制备及其表征(英)   总被引:1,自引:0,他引:1  
通过在含有SeSO32-和Cd2+的室温水溶液中,用模板-电沉积法在纳米孔阵列阳极氧化铝膜(AAM)模板中制备了高有序性的CdSe纳米线阵列,并对其形貌、结构和组分进行了表征。扫描电子显微镜(SEM)和透射电子显微镜(TEM)结果表明,纳米线阵列中的CdSe纳米线具有相同的长度和直径,分别对应于使用的AAM模板的厚度和孔径;X-射线衍射(XRD)和X-射线能谱(EDAX)结果表明,CdSe纳米线中Cd和Se的化学组成非常接近于1∶1,其结构为立方CdSe。另外,对模板-电沉积法制备CdSe纳米线的机理进行了讨论。  相似文献   

17.
Herein, highly luminescent CdSe quantum dots (QDs) with emissions from the blue to the red region of visible light were synthesized by using a simple method. The emission range of the CdSe QDs could be tuned from λ=503 to 606 nm by controlling the size of the CdSe QDs. Two amino acids, L ‐tryptophan (L ‐Trp) and L ‐arginine (L ‐Arg), were used as coating agents. The quantum yield (QY) of CdSe QDs (green color) with an optimized thickness could reach up to 52 %. The structures and compositions of QDs were examined by using X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Optical properties were studied by using UV/Vis and photoluminescence (PL) spectroscopy and a comparison was made between uncoated and coated CdSe QDs. The amino acid‐modified β‐cyclodextrin (CD)‐coated CdSe QDs presented lower cytotoxicity to cells for 48 h. Furthermore, amino acid‐modified β‐CD‐coated green CdSe QDs in HepG2 cells were assessed by using confocal laser scanning fluorescence microscopy. The results showed that amino acid‐modified β‐CD‐coated green CdSe QDs could enter tumor cells efficiently and indicated that biomolecule‐coated QDs could be used as a potential fluorescent probe.  相似文献   

18.
The morphology of CdSe/SiO(2) was manipulated from core-shell-structured nanoparticles to nanocables by using a chemical vapor deposition (CVD) process. The growth of nanocables, with cores no more than 20 nm in diameter, is initiated by the formation of core-shell nanoparticles with SiO(2) as matrix and CdSe clusters dispersed inside. After the subsequent vaporization of the SiO(2) matrix, the follow-up CdSe vapor crystallizes with the remaining CdSe clusters as nuclei to form CdSe nanowires as the furnace was cooled to 1200 degrees C. During the controlled cooling of the furnace, the SiO vapor re-deposits to sheathe the nanowires. The thickness of the shell and the diameter of core were successfully controlled. The photoluminescence measurements show that the CdSe/SiO(2) nanocables have strong visible-light emission bands located at 590 and 688 nm, which are attributed to the defects induced by SiO(2) sheaths nanowires and the quantum confinement effect of the CdSe, respectively. The UV/Vis absorption spectra of the naked CdSe nanowires further validate the above-mentioned quantum confinement effect. The deterministic growth of these nanocables is very important for the design of the nanodevices based on them.  相似文献   

19.
The influence of temperature and applied magnetic fields on photoluminescence (PL) emission and electronic energy transfer (ET) of both isolated and aggregated CdSe nanocrystals was investigated. Following 400-nm excitation, temperature-dependent, intensity-integrated and energy-resolved PL measurements were used to quantify the emission wavelength and amplitude of isolated CdSe nanocrystals. The results indicated an approximately three-fold increase in PL intensity upon decreasing the temperature from 300 K to 6 K; this was attributed to a reduction of charge carrier access to nanocrystal surface trap states and suppression of thermal loss channels. Temperature-dependent PL measurements of aggregated CdSe nanocrystals, which included both energy-donating and -accepting particles, were analyzed using a modified version of F?rster theory. Temperature-dependent ET efficiency increased from 0.55 to 0.75 upon decreasing the sample temperature from 225 K to 6 K, and the ET data contained the same trend observed for the PL of isolated nanoclusters. The application of magnetic fields to increase nanocrystal ET efficiency was studied using magneto-photoluminescence measurements recorded at a sample temperature of 1.6 K. We demonstrated that the exciton fine structure population of the donor was varied using applied magnetic fields, which in turn dictated the PL yield and the resultant ET efficiency of the CdSe nanocrystal aggregate system. The experimental data indicated an ET efficiency enhancement of approximately 7%, which was limited by the random orientation of the spherical nanocrystals in the thin film.  相似文献   

20.
In this work, tri-octyl phosphine/tri-octyl phosphine oxide (TOPO)-capped cadmium selenide (CdSe) quantum dots (QDs) of varied sizes (5–9 nm), prepared by varying the input Cd:Se precursor ratio using chemical route, were dispersed in conducting polymer matrices viz. poly[2-methoxy, 5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) and poly(3-hexylthiophene) (P3HT). By using a binary solvent mixture (pyridine–chloroform), homogeneous dispersion of CdSe nanocrystals in polymers (MEH-PPV, P3HT) could be realized. The properties of the resulting dispersions could be tailored by the composition and concentration of QDs in polymer. The emission and structural properties of polymer–CdSe nanocomposites are found to be dependent on the crystallite size and morphology of CdSe nanocrystallites. An effective quenching of photoluminescence emission in the polymer nanocomposite was observed for smaller CdSe quantum dots (size ∼6 nm) as compared to larger CdSe quantum dots (size ∼9 nm), thus ensuring efficient charge transfer process across the polymer–CdSe interface in the former case. The incomplete quenching, particularly for MEH-PPV:CdSe nanocomposites, could be as a result of insufficient coverage of polymers on the surface of CdSe nanocrystallites, mainly due to phase segregation for TOPO-stripped CdSe nanocrystallites. The superior morphology and optical properties of polymer nanocomposite (P3HT:CdSe QDs) could play a pivotal role for the realization of effective charge separation and transport in hybrid solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号