首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微流控液滴技术及其应用的研究进展   总被引:1,自引:0,他引:1  
微液滴具有体积小、比表面积大,速度快、通量高,大小均匀、体系封闭,内部稳定等特性,在药物控释、病毒检测、颗粒材料合成、催化剂等领域中均有重要应用.微流控技术的发展为微液滴生成中实现尺寸规格、结构形貌和功能特性等的可控设计和精确操控提供了全新平台.本文概述了微流控液滴技术的基本原理、液滴生成方式及其基本操控,比较分析了微液滴的传统制备法与微流控合成法的异同,介绍了近年来微流控液滴技术在功能材料合成、生物医学和食品加工等领域中的研究新进展,探讨并展望了微流控液滴技术的潜在价值和未来发展方向.  相似文献   

2.
Droplet-based microfluidics enables the generation of uniform microdroplets at picoliter or nanoliter scale with high frequency(~kHz) under precise control. The droplets can function as bioreactors for versatile chemical/biological study and analysis. Taking advantage of the discrete compartment with a confined volume,(1) isolation and manipulation of a single cell,(2) improvement of in-droplet effective concentrations,(3) elimination of heterogeneous population effects,(4) diminution of contami...  相似文献   

3.
März A  Henkel T  Cialla D  Schmitt M  Popp J 《Lab on a chip》2011,11(21):3584-3592
This review outlines concepts and applications of droplet formation via flow-through microdevices in Raman and surface enhanced Raman spectroscopy (SERS) as well as the advantages of the approach. Even though the droplet-based flow-through technique is utilized in various fields, the review focuses on implementing droplet-based fluidic systems in Raman and SERS as these highly specific detection methods are of major interest in the field of analytics. With the combination of Raman or SERS with droplet-based fluidics, it is expected to achieve novel opportunities for analytics. Besides the approach of using droplet-based microfluidic devices as a detection platform, the unique properties of flow-through systems for the formation of droplets are capitalized to produce SERS active substrates and to accomplish uniform sample preparation. Within this contribution, previous reported applications on droplet-based flow-through Raman and SERS approaches and the additional benefit with regard to the importance in the field of analytics are considered.  相似文献   

4.
Droplet microfluidics   总被引:15,自引:0,他引:15  
Teh SY  Lin R  Hung LH  Lee AP 《Lab on a chip》2008,8(2):198-220
Droplet-based microfluidic systems have been shown to be compatible with many chemical and biological reagents and capable of performing a variety of "digital fluidic" operations that can be rendered programmable and reconfigurable. This platform has dimensional scaling benefits that have enabled controlled and rapid mixing of fluids in the droplet reactors, resulting in decreased reaction times. This, coupled with the precise generation and repeatability of droplet operations, has made the droplet-based microfluidic system a potent high throughput platform for biomedical research and applications. In addition to being used as microreactors ranging from the nano- to femtoliter range; droplet-based systems have also been used to directly synthesize particles and encapsulate many biological entities for biomedicine and biotechnology applications. This review will focus on the various droplet operations, as well as the numerous applications of the system. Due to advantages unique to droplet-based systems, this technology has the potential to provide novel solutions to today's biomedical engineering challenges for advanced diagnostics and therapeutics.  相似文献   

5.
Droplet-based microreactors are of great interest to researchers due to their incredible ability in the synthesis of micro/nano-materials with multi-function and complex geometry. In recent years, a broad range of micro/nano-materials has been synthesized in droplet-based microreactors, which provide apparent advantages, such as better reproducibility, reliable automation, and accurate manipulation. In this review, we give a comprehensive and in-depth insight into droplet-based microreactors, covering fundamental research from droplet generation and manipulation to the applications of droplet-based microreactors in micro/nano-material generation. We also explore the outlook for droplet-based microreactors and challenges that lie ahead and give a possible effort direction. We hope this review will promote communications among researchers and entrepreneurs.  相似文献   

6.
Biofouling or adsorption of biomolecules onto surfaces in microfluidic devices limits the type of samples which can be handled. In this paper, we take advantage of the high adsorption capacity of graphene oxide (GO) for proteins as a strategy to limit biofouling, while preserving their activity for droplet-based lab-on-chip applications.  相似文献   

7.
A droplet-based electrochemical digital magnetofluidics system has been developed. The system relies on the magnetic movement, in air, of different aqueous microdroplets containing magnetic microparticles--serving as the 'sample', 'blank', 'wash' and 'reagent' solutions--into and out of a three-electrode assembly. The movement of all droplets was controlled using the magnetic fields generated by three separate external magnets positioned below the superhydrophobic surface. Square-wave voltammetry was used for rapid measurements of dopamine in multiple successive microdrops with minimal cross talk. The ability of the droplet-based electrochemical microfluidic system to manipulate microliter solutions was also illustrated in bioassays of glucose, involving the merging of enzyme (GOx) and substrate droplets, followed by chronoamperometric measurements of the hydrogen peroxide product in the merged droplet. Variables of the new electrochemical digital magnetomicrofluidic technique were examined and optimized. The new droplet-based electrochemical microfluidic system offers a promising platform for automated clinical diagnostics and drug discovery.  相似文献   

8.
Surfactants in droplet-based microfluidics   总被引:1,自引:0,他引:1  
Baret JC 《Lab on a chip》2012,12(3):422-433
Surfactants are an essential part of the droplet-based microfluidic technology. They are involved in the stabilization of droplet interfaces, in the biocompatibility of the system and in the process of molecular exchange between droplets. The recent progress in the applications of droplet-based microfluidics has been made possible by the development of new molecules and their characterizations. In this review, the role of the surfactant in droplet-based microfluidics is discussed with an emphasis on the new molecules developed specifically to overcome the limitations of 'standard' surfactants. Emulsion properties and interfacial rheology of surfactant-laden layers strongly determine the overall capabilities of the technology. Dynamic properties of droplets, interfaces and emulsions are therefore very important to be characterized, understood and controlled. In this respect, microfluidic systems themselves appear to be very powerful tools for the study of surfactant dynamics at the time- and length-scale relevant to the corresponding microfluidic applications. More generally, microfluidic systems are becoming a new type of experimental platform for the study of the dynamics of interfaces in complex systems.  相似文献   

9.
In the last decade, droplet-based microfluidics has undergone rapid progress in the fields of single-cell analysis, digital PCR, protein crystallization and high throughput screening. It has been proved to be a promising platform for performing chemical and biological experiments with ultra-small volumes (picoliter to nanoliter) and ultra-high throughput. The ability to analyze the content in droplet qualitatively and quantitatively is playing an increasing role in the development and application of droplet-based microfluidic systems. In this review, we summarized the analytical detection techniques used in droplet systems and discussed the advantage and disadvantage of each technique through its application. The analytical techniques mentioned in this paper include bright-field microscopy, fluorescence microscopy, laser induced fluorescence, Raman spectroscopy, electrochemistry, capillary electrophoresis, mass spectrometry, nuclear magnetic resonance spectroscopy, absorption detection, chemiluminescence, and sample pretreatment techniques. The importance of analytical detection techniques in enabling new applications is highlighted. We also discuss the future development direction of analytical detection techniques for droplet-based microfluidic systems.  相似文献   

10.
整体柱离子色谱的研究进展   总被引:1,自引:0,他引:1  
陈倩  于泓 《分析测试学报》2011,30(6):705-712
该文介绍了离子色谱的分类,整体柱的分类、制备及特点,并以此为依据归纳总结了常规整体柱在离子色谱中的应用和毛细管整体柱在毛细管离子色谱中的应用,其中包括硅胶基质整体柱和聚合物基质整体柱,评述并展望了整体柱离子色谱的发展前景.  相似文献   

11.
The development of simple and inexpensive DNA detection strategy is very significant for droplet-based microfluidic system. Here, a droplet-based biosensor for multiplexed DNA analysis is developed with a common imaging device by using fluorescence-based colorimetric method and a graphene nanoprobe. With the aid of droplet manipulation technique, droplet size adjustment, droplet fusion and droplet trap are realized accurately and precisely. Due to the high quenching efficiency of graphene oxide (GO), in the absence of target DNAs, the droplet containing two single-stranded DNA probes and GO shows dark color, in which the DNA probes are labeled carboxy fluorescein (FAM) and 6-carboxy-X-rhodamine (ROX), respectively. The droplet changes from dark to bright color when the DNA probes form double helix with the specific target DNAs leading to the dyes far away from GO. This colorimetric droplet biosensor exhibits a quantitative capability for simultaneous detection of two different target DNAs with the detection limits of 9.46 and 9.67 × 10−8 M, respectively. It is also demonstrated that this biosensor platform can become a promising detection tool in high throughput applications with low consumption of reagents. Moreover, the incorporation of graphene nanoprobe and droplet technique can drive the biosensor field one more step to some extent.  相似文献   

12.
Cao  Jialan  Nagl  Stefan  Kothe  Erika  Köhler  J. Michael 《Mikrochimica acta》2015,182(1-2):385-394
Microchimica Acta - We are presenting a microfluidic droplet-based system for non-invasive, simultaneous optical monitoring of oxygen during bacterial cultivation in nL-sized droplets using...  相似文献   

13.
The primary requirement for a mixing operation in droplet-based microfluidic devices is an accurate pairing of droplets of reaction fluids over an extended period of time. In this paper, a novel device for self-synchronous production of droplets has been demonstrated. The device uses a change in impedance across a pair of electrodes introduced due to the passage of a pre-formed droplet to generate a second droplet at a second pair of electrodes. The device was characterised using image analysis. Droplets with a volume of ~23.5 ± 3.1 nl (i.e.~93% of the volume of pre-formed droplets) were produced on applying a voltage of 500 V. The synchronisation efficiency of the device was 83%. As the device enables self-synchronised production of droplets, it has a potential to increase the reliability and robustness of mixing operations in droplet-based microfluidic devices.  相似文献   

14.
With a microfluidic droplet-based liquid/liquid extraction setup, we demonstrate that the extraction of an ionic analyte from complex matrices can be modulated by the interfacial Galvani potential difference and the extraction equilibrium follows the classical Nernst equation.  相似文献   

15.
Shi W  Qin J  Ye N  Lin B 《Lab on a chip》2008,8(9):1432-1435
A droplet-based microfluidic system integrating a droplet generator and a droplet trap array is described for encapsulating individual Caenorhabditis elegans into a parallel series of droplets, enabling characterization of the worm behavior in response to neurotoxin at single-animal resolution.  相似文献   

16.
Since the appearance of monolithic silica, much work has been done describing the properties of monolithic silica columns. Meanwhile the transferability of analytical methods from conventional to monolithic silica columns has been intensively investigated [1-5]. RP HPLC method development strategies for conventional columns should be updated or scaled to meet the higher performing monolithic column technology. Because of the high permeability of monolithic silica columns it should be possible to decrease the time for method development by applying high isocratic flow rates. Here we suggest a clear strategy for method development using monolithic columns. The strategy will be applicable for various sample compositions, e. g., acidic, basic, or neutral. The applicability of monolithic columns for especially complex separations of basic mixtures without the need of using a highly basic mobile phase that harms the column will be pointed out in this work. This work will describe in detail the actual method development process. For better understanding of our strategy, the influence of flow rate, column length, mobile phase composition, pH, and temperature will be discussed. Details about the application of a flow program will be mentioned.  相似文献   

17.
Yan F  Chen B 《色谱》2011,29(5):426-429
以硅酸钾为硅源,甲酰胺为催化剂在毛细管内原位聚合形成干凝胶柱,制备了一系列致密度不同的整体柱。该法在柱制备及高温干燥过程中不会发生柱床断裂和塌陷现象,此特点明显优于以烷氧基硅烷为前驱体制备无机整体柱的方法。考察了不同模数硅酸钾对整体柱柱床结构的影响,用扫描电镜(SEM)和氮吸附法对整体柱结构进行了表征,考察了整体柱柱压与流速的关系;对整体柱进行十八烷基修饰后,测定了反相整体柱(C18整体柱)对蒽的柱效,通过考察甲苯在该柱上的突破曲线,获得了其对甲苯的柱容量。结果显示该整体柱柱床刚性好,在高温、高柱压、高流速时柱床能保持其物理结构的稳定性,对蒽的柱效达到41400理论塔板/m,对甲苯的柱容量为61 ng。  相似文献   

18.
Engineered peptide ligands with exceptionally high affinity for metal can self-assemble with nanoparticles in biological fluids. A high-affinity dendrimeric peptide ligand for CdSe-ZnS quantum dots (QDs) exhibited very fast association kinetics with QDs and reached equilibrium within 2 s. Here, we have combined a droplet-based microfluidic device with fluorescence detection based on F?rster resonance energy transfer (FRET) to provide subsecond resolution in dissecting this fast self-assembly kinetics in solution. This work represents the first application of microfluidic devices to ligand-particle assembly for the measurement of fast assembly kinetics in solution.  相似文献   

19.
Ji J  Zhao Y  Guo L  Liu B  Ji C  Yang P 《Lab on a chip》2012,12(7):1373-1377
A spherical liquid-liquid interface can be obtained by dispersing one liquid phase into another to form droplets, which will facilitate the two-phase reactions between the immiscible participating fluids. The phase transfer catalysts assembled at the droplet "wall" catalyze the reactions between the aqueous and organic phases. The study illustrates an interfacial synthetic approach which is ideal for the biphasic reaction by taking advantage of the droplet-based microdevice. The improved reaction efficiency can be attributed to the high surface-to-volume ratio and internal flow circulation in the droplets.  相似文献   

20.
Sami El Deeb 《Chromatographia》2011,74(9-10):681-691
As an approach for fast HPLC, monolithic silica has proven to be highly effective. It is especially successful for routinely obtaining fast isocratic HPLC analyses of small drug molecules. The low cost of monolithic compared with other approaches, such as UPLC, makes it more convenient for everyday application. It is also the more developed and widely applied technique compared with superficially porous particles. It offers the possibility for gaining high plate numbers through column coupling, but not at the expense of run time if a proper flow program is subsequently applied. Good precision and batch reproducibility are now achieved with commercially available monolithic silica columns. The application of monolithic silica columns is already well developed in various fields. It invades the field of bio-analysis and proteomics. Hundreds of analytical methods have already been successfully transferred to or developed on monolithic silica columns. An updated strategy based on Snyder??s method for rapid method development using monolithic column has been provided. However, more is still to be expected from monolithic silica in term of chemistry variation, application, and instrument compatibility. The future of monolithic silica is promising when considering the high demand for fast chromatographic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号