首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S DAOUD  N BIOUD  N LEBGAA 《Pramana》2013,81(5):885-892
Pseudopotential plane-wave method (PP–PW) based on density functional theory (DFT) and density functional perturbation theory (DFPT) within the Teter and Pade exchange-correlation functional form of the local spin density approximation (LSDA) is applied to study the effect of pressure on the elastic and piezoelectric properties of the (B3) boron–bismuth compound. The phase transition, the independent elastic stiffness constants, the bulk modulus, the direct and converse piezoelectric coefficients, the longitudinal, transverse, and average sound velocities, and finally the Debye temperature under pressure are studied. The results obtained are generally lower than the available theoretical data (experimental data are not available) reported in the literature.  相似文献   

2.
In this paper, the density functional theory calculations are used to obtain the elastic properties of zigzag phosphorene nanotubes. Besides, based on the similarity between phosphorene nanotubes and a space-frame structure, a three-dimensional finite element model is proposed in which the atomic bonds are simulated by beam elements. The results of density functional theory are employed to compute the properties of the beam elements. Finally, using the proposed finite element model, the elastic modulus of the zigzag phosphorene nanotubes is computed. It is shown that phosphorene nanotubes with larger radii have larger Young's modulus. Comparing the results of finite element model with those of density functional theory, it is concluded that the proposed model can predict the elastic modulus of phosphorene nanotubes with a good accuracy.  相似文献   

3.
The goal of this study was to measure elastic stiffness coefficients of freshly excised and subsequently formalin-fixed myocardial tissue. Our approach was to measure the angle-dependent phase velocities associated with the propagation of a longitudinal ultrasonic wave (3-8 MHz) in ovine myocardium using phase spectroscopy techniques and to interpret the results in the context of orthotropic and transversely isotropic models describing the elastic properties of myocardium. The phase velocity results together with density measurements were used to obtain the elastic stiffness coefficients c11, c33, and c13 for both symmetries. The results for the elastic stiffness coefficients c11, c33, and c13 are the same for both symmetries. Measurements for freshly excised myocardium and the same tissue after a period of formalin fixation were compared to examine the impact of fixation on the elastic stiffness coefficients.  相似文献   

4.
We have studied structural, elastic, dielectric, vibrational, and piezoelectric properties of rock-salt and zinc-blende Mg alkaline earth chalcogenides (MgS, and MgSe) by using the plane-wave pseudopotential method within the local density approximation. The calculated lattice constant, bulk modulus, and elastic constants for these compounds are found to be in good agreement with experiment. The density functional perturbation theory has been employed to derive the Born effective charge and high-frequency dielectric constant and to calculate phonon dispersion curves and density of states. The piezoelectric constant has also been determined. The calculated results are compared with theory and experiment when available and showed reasonable agreement. In other cases, our results are predictions. The pressure dependence of the studied quantities has been examined and discussed. The pressure coefficients and mode Grüneisen parameters are determined.  相似文献   

5.
A study of the high-pressure anisotropy of MgO was conducted using first-principles calculations based on density functional theory within the generalized gradient approximations. The pressure dependence of the elastic stiffness coefficients and the anisotropy parameters, in both B1 and B2 phases, shows that for high-hydrostatic compression the easiest deformation is the shear along (100) plane and the the material's response to deformation and to shearing strains is quite the same. According to the calculations of the velocities of propagation of elastic waves, we deduced that MgO develop an elastic anisotropy, especially, in the B1 phase. We present the B2 phase elastic properties which are not already studied under high pressure.  相似文献   

6.
ABSTRACT

The structural, electronic, elastic and thermodynamic properties of LuX (X = N, Bi and Sb) based on rare earth into phases, Rocksalt (B1) and CsCl (B2) have been investigated using full-potential linearized muffin-tin orbital method (FP-LMTO) within density functional theory. Local density approximation (LDA) for exchange-correlation potential and local spin density approximation (LSDA) are employed. The structural parameters as lattice parameters a0, bulk modulus B, its pressure derivate B’ and cut-off energy (Ec) within LDA and LSDA are presented. The elastic constants were derived from the stress–strain relation at 0 K. The thermodynamic properties for LuX using the quasi-harmonic Debye model are studied. The temperature and pressure variation of volume, bulk modulus, thermal expansion coefficient, heat capacities, Debye temperature and Gibbs free energy at different pressures (0–50 GPa) and temperatures (0–1600 K) are predicted. The calculated results are in accordance with other data.  相似文献   

7.
The complete tensor of the elastic stiffness constantsC ij (i,j=1 to 6) of -NH4LiSO4 has been measured in the temperature range 290 K to 540 K including the ferroelectric phase transition at 460 K, by the ultrasonic pulse echo overlap method.Some ultrasonic attenuation coefficients were determined.The elastic stiffness constants were calculated using Landau Theory. The elastic stiffness constants are all well described within this theory with the exception ofC 66, which can not be reproduced with coupling terms allowed by group theoretical arguments. This together with double peaks observed in the specific heat and in sound attenuation in some directions leads one to suspect an intermediate phase between the paraelectric and the ferroelectric phases.  相似文献   

8.
The structural phase stability, elastic parameters and thermodynamic properties of YN at normal and under high pressure are reported. The calculations are mainly performed using the full-potential linearized augmented plane wave method within the density functional theory. Both local density approximation (LDA) and generalized gradient approximation (GGA) are used to model the correlation-exchange potential. The calculated equilibrium lattice parameter and the bulk modulus show good accordance with the experimental and previous theoretical reports. The phase transition from the NaCl (B1) structure to the CsCl (B2) structure is found to occur at 131?GPa within GGA and 115?GPa within LDA. The linear pressure coefficients of the different elastic moduli being addressed here are also determined along with the mechanical and dynamical stability criteria which are shown to be satisfied for YN with B1 phase under normal conditions. Besides, the heat capacity and other thermodynamic parameters are examined and discussed versus temperature.  相似文献   

9.
The Bi(111) surface was studied by elastic scattering of helium atoms at temperatures between 118 and 423 K. The observed diffraction patterns with clear peaks up to third order were used to model the surface corrugation using the eikonal approximation as well as the GR method. Best fit results were obtained with a rather large corrugation height compared to other surfaces with metallic character. The corrugation shows a slight enhancement of the surface electron density in between the positions of the surface atoms. The vibrational dynamics of Bi(111) were investigated by measurements of the Debye-Waller attenuation of the elastic diffraction peaks and a surface Debye temperature of (84 ± 8) K was determined. A decrease of the surface Debye temperature at higher temperatures that was recently observed on Bi nanofilms could not be confirmed in the case of our single-crystal measurements.  相似文献   

10.
In this paper we present the results obtained from first-principles calculations of the effect of hydrostatic pressure on the structural, elastic and electronic properties of (B3) boron phosphide, using the pseudopotential plane-wave method (PP-PW) based on density functional theory within the Teter and Pade exchange-correlation functional form of the local density approximation (LDA). The lattice parameter, molecular and crystal densities, near-neighbour distances, independent elastic constants, bulk modulus, shear modulus, anisotropy factor and energy bandgaps of (B3) BP under high pressure are presented. The results showed a phase transition pressure from the zinc blende to rock-salt phase at around 1.56?Mbar, which is in good agreement with the theoretical data reported in the literature.  相似文献   

11.
The structural parameters, mechanical, electronic and thermodynamic properties of TE-C36 under high pressure were calculated via the density functional theory in combination with the quasi-harmonic Debye model. The results show that the pressure has significant effects on the equilibrium structure parameters, mechanical, electronic and thermodynamic properties of TE-C36. The obtained ground state structural parameters are in good agreement with previous theoretical results. The mechanically and dynamically stable under pressure were confirmed by the calculated elastic constants and phonon dispersion spectra. The elastic constants, elastic modulus, B/G ratio, Poisson’s ratio and Vicker’s hardness were determined in the pressure range of 0–100?GPa. The elastic anisotropy of TE-C36 under pressure are also determined in detail. The electronic structure calculations reveal that TE-C36 remains a direct band gap semiconductor when the pressure changes from 0 to 100?GPa, and the band gap decreases with increasing pressure. Furthermore, the pressure and temperature dependence of thermal expansion coefficient, heat capacity and Debye temperature are predicted in a wide pressure (0–90?GPa) and temperature (0–2500?K) ranges. The obtained results are expected to provide helpful guidance for the future synthesis and application of TE-C36.  相似文献   

12.
The plane-wave pseudopotential method using the generalized gradient approximation within the framework of density functional theory is applied to analyse the lattice parameters, elastic constants, bulk moduli, shear moduli and Young's moduli of WSi2. The quasi-harmonic Debye model, using a set of total energy versus cell volume obtained with the plane-wave pseudopotential method, is applied to the study of the elastic properties and vibrational effects. The athermal elastic constants of WSi2 are calculated as a function of pressure up to 35GPa. The relationship between bulk modulus and temperature up to 1200K is also obtained. Moreover, the Debye temperature is determined from the non-equilibrium Gibbs function. The calculated results are in good agreement with the experimental data.  相似文献   

13.
The elastic tensor of the tetragonal NiSO4 . 6H2O (retgersite) was measured with a resonant ultrasonic plane parallel plate technique at room temperature as a function of hydrostatic pressure in the range of 0.1-50 MPa and the piezoelastic coefficients have been derived. The monotonic increase in the cij shows that retgersite does not undergo a phase transition in this pressure range. Density functional theory (DFT) based calculations within the linear response method were used to predict the variation of the cij in the range of 1-1000 MPa in the static limit. A comparison of the two data sets shows that while structural parameters and elastic stiffness coefficients are well reproduced by the DFT model, theoretical piezoelastic coefficients of compressible compounds are only in moderate agreement with the corresponding experimental values. The limitations of DFT-based calculations for the calculation of piezoelastic coefficients are discussed.  相似文献   

14.
The interfacial tension of systems containing water, n-decane, and model naphthenic acids were investigated using a predictive model based on COSMO-RS theory and experimental pendant drop measurements. Five naphthenic acid homologues that are considered to be representative of surfactants inherent to crude oil were dissolved in n-decane at equal concentrations. The interfacial tensions of the five systems at an acid concentration of 1.66?mol% relative to n-decane were experimentally determined to be 27–30?mN/m. The interfacial tensions of the five different acid-decane phases against water were also predicted using density functional theory (DFT) calculations and COSMO-RS theory. The accuracy of the predictions was very good as confirmed through pendant drop measurements of the interfacial tension. The mean-absolute-deviation between experimental and predicted values was 2.6?mN/m thus demonstrating the high predictive power of COSMO-RS theory for calculating the interfacial tension at oil–water interfaces in the presence of surface-active compounds.  相似文献   

15.
陆鹏  王耀俊 《物理学报》2001,50(4):697-703
导出了求解母材料固体中镶嵌的柱状弹性固体(两固体间存在界面薄层)声波散射系数的一般表达式.根据Flax的共振散射理论,对背向散射谱中的共振模式进行了识别.利用模拟界面薄层的弹簧模型,考察了界面层切向劲度常数KT对共振模式形态的影响 关键词: 声波散射 共振模式 界面  相似文献   

16.
It is necessary for designing vibration-isolation systems to know the components’ static stiffness, dynamic stiffness and shock stiffness, which are obtained through experiment at present. If the stiffness model of (viscous) elastic body is set-up, the essence of stiffness will be clearer and the experiment simpler. This paper presents a new method for modelling the stiffness of elastic body with viscoelastic theory. The parameters of the model set-up by using this method can be determined easily and present the characteristics of the elastic body's static stiffness, dynamic stiffness and shock stiffness.  相似文献   

17.
The pseudopotential plane-wave approach in the framework of the density functional theory, and the density functional perturbation theory with the generalized gradient approach for the exchange-correlation functional has been used to calculate the structural phase stability, elastic constants and thermodynamic properties of boron-arsenide (BAs) compound. The BAs compound transforms from the zincblende phase to rock-salt structure; the phase transition pressure was found to be 141.2 GPa with a volume contraction of around 8.2%. The thermodynamic properties under high pressure and temperature up to 125 GPa and 1200 K respectively were also determined, analyzed and discussed in comparison with other data of the literature. The systematic errors in the static energy were corrected using the bpscal EEC method. Our results agree well with those reported in the literature, where for example, our calculated melting temperature (2116 K) deviates from the theoretical one (2132.83 K) with only 0.8%, and the deviation between our result (1.86) of the Grüneisen parameter and the theoretical one (1.921) is only around 3.2%.  相似文献   

18.
Macroscopic field equations, boundary conditions and equations of state are derived for the non-linear, macroscopic elastic and dielectric response of an insulator. A centrosymmetric polynomial representation of order four is introduced for the energy density; the equations of state for the electric field and stress tensor are then deduced as polynomials of degree three in the displacement gradients and electric displacement field. The results are applied to the special case of m3m material symmetry.

A finite, point-charge model of a centrosymmetric ionic crystal is introduced and used to determine 0°K microscopic expressions for the electric field and stress tensor equation of state coefficients introduced in the macroscopic analysis. The results are used to calculate the full set of second and third-order non-linear coefficients for NaI, based on a Born-Mayer potential and the 4·2°K elastic stiffness data of Claytor and Marshall.  相似文献   

19.
The standard molar enthalpies of combustion, sublimation, and formation in the crystalline and gaseous phase at a temperature of 298.15?K have been experimentally determined for saccharin and for benzenesulfonamide. These compounds were also studied theoretically using density functional theory, the B3LYP functional and extended basis sets.  相似文献   

20.
First-principles calculations were performed to investigate the structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba) using two complementary approaches based on density functional theory. The pseudopotential plane-wave method was used to explore the structural and elastic properties whereas the full-potential linearised augmented plane wave approach was used to study the structural, electronic, optical and thermoelectric properties. The calculated structural parameters are in good consistency with the corresponding measured ones. The single-crystal and polycrystalline elastic constants and related properties were examined in details. The electronic properties, including energy band dispersions, density of states and charge-carrier effective masses, were computed using Tran-Blaha modified Becke-Johnson functional for the exchange-correlation potential. It is found that both studied compounds are direct band gap semiconductors. Frequency-dependence of the linear optical functions were predicted for a wide photon energy range up to 15 eV. Charge carrier concentration and temperature dependences of the basic parameters of the thermoelectric properties were explored using the semi-classical Boltzmann transport model. Our calculations unveil that the studied compounds are characterised by a high thermopower for both carriers, especially the p-type conduction is more favourable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号