首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The interaction of water vapor with carbon nanotubes at room temperature has been investigated using Fourier transform (FT) IR spectroscopy and density functional theory (DFT) calculations. FTIR data indicate that water molecules adsorb on single-walled carbon nanotubes at room temperature. Comparison to previous studies suggests that the water forms hydrogen-bonded structures inside the nanotubes. Analysis of the FTIR data demonstrates that a small number of water molecules react with the nanotubes, forming C-O bonds, whereas a majority of the water molecules adsorb intact. The DFT calculations show that cleavage of an O-H bond upon adsorption to form adsorbed -H and -OH groups is energetically favorable at defect sites on nanotubes.  相似文献   

3.
Monte Carlo simulations and Widom's test particle insertion method have been used to calculate the solubility coefficients (S) and the adsorption equilibrium constants (K) in single-walled (10,10) armchair carbon nanotubes including single nanotubes, and nanotube bundles with various configurations with and without alkali dopants. The hydrogen adsorption isotherms at room temperature were predicted by following the Langmuir adsorption model using the calculated constants S and K. The simulation results were in good agreement with experimental data as well as the grand canonical Monte Carlo simulation results reported in the literature. The simulations of nanotube bundle configurations suggest that the gravimetric hydrogen adsorption increases with internanotube gap size. It may be attributed to favorable hydrogen-nanotube interactions outside the nanotubes. The effect of alkali doping on hydrogen adsorption was studied by incorporating K+ or Li+ ions into nanotube arrays using a Monte Carlo simulation. The results on hydrogen adsorption isotherms indicate hydrogen adsorption of 3.95 wt% for K-doping, and 4.21 wt% for Li-doping, in reasonable agreement with the experimental results obtained at 100 atm and room temperature.  相似文献   

4.
利用空气氧化和稀酸回流纯化单壁碳纳米管,用高分辨透射电镜、拉曼光谱对碳纳米管进行了表征.在分子模拟中,非极性氢气、甲烷分子采用单点Lennard-Jones球形分子模型,流体分子与C原子之间相互作用采用虚拟原子模型.以液氮温度下碳纳米管对氮气的吸附等温线实验数据为依据,利用巨正则蒙特卡罗方法模拟得到了碳纳米管的孔径分布,主要集中在6nm.计算了常温常压下碳纳米管中甲烷及氢气的吸附等温线,298K及0.1MPa压力下,氢气的吸附量达到0.015%(质量分数),甲烷在样品中的吸附量可以达到0.5%(质量分数).模拟研究结果表明碳纳米管可以用作固相微萃取涂层材料.  相似文献   

5.
Single-walled carbon nanotubes (SWNTs) are exfoliated and functionalized into small bundles and individuals by vigorous stirring "on water" in the presence of a substituted aniline and an oxidizing agent. This is an example of an "on water" reaction that leads to functionalized SWNTs, and it represents a "green", or environmentally friendly, process. A variety of reaction conditions were explored. The products were analyzed with Raman, UV-vis-NIR, and X-ray photoelectron spectroscopies, atomic force and transmission electron microscopies, and thermogravimetric analysis.  相似文献   

6.
We investigated the adsorption of hydrogen atoms on metallic single-walled carbon nanotubes using ab initio molecular dynamics method. It was found that the geometric structures and the electronic properties of hydrogenated SWNTs can be strongly changed by varying hydrogen coverage. The circular cross sections of the CNTs were changed with different hydrogen coverage. When hydrogen is chemisorbed on the surface of the carbon nanotube, the energy gap will be appeared. This is due to the degree of the sp3 hybridization, and the hydrogen coverage can control the band gap of the carbon nanotube.  相似文献   

7.
Bioelectrochemical single-walled carbon nanotubes   总被引:21,自引:0,他引:21  
Metalloproteins and enzymes can be immobilized on SWNTs of different surface chemistry. The combination of high surface area, robust immobilization and inherent nanotube electrochemical properties is of promising application in bioelectrochemistry.  相似文献   

8.
9.
Hydrogen adsorption measurements on Al-, Cr-, and Zn-based metal-organic frameworks (MOFs) and single-walled carbon nanotubes (SWNTs) are presented. The measurements were performed at temperatures ranging from 77 to 300 K and pressures up to 50 atm using a volumetric approach. The maximum excess adsorption at 77 K ranges from 2.3 to 3.9 wt % for the MOFs and from 1.5 to 2.5 wt % for the SWNTs. These values are reached at pressures below 40 atm. At room temperature and 40 atm, modest amounts of hydrogen are adsorbed (<0.4 wt %). A Dubinin-Astakhov (DA) approach is used to investigate the measured adsorption isotherms and to retrieve energetic and structural parameters. The adsorption enthalpy averaged over filling is about 2.9 kJ/mol for the MOF-5 and about 3.6-4.2 kJ/mol for SWNTs.  相似文献   

10.
Soluble, ultra-short (length < 60 nm), carboxylated, single-walled carbon nanotubes (SWNTs) have been prepared by a scalable process. This process, predicated on oleum's (100% H2SO4 with excess SO3) ability to intercalate between individual SWNTs inside SWNT ropes, is a procedure that simultaneously cuts and functionalizes SWNTs using a mixture of sulfuric and nitric acids. The solubility of these ultra-short SWNTs (US-SWNTs) in organic solvents, superacid and water is about 2 wt %. The availability of soluble US-SWNTs could open opportunities for forming high performance composites, blends, and copolymers without inhibiting their processibility.  相似文献   

11.
Grand canonical Monte Carlo simulations are performed to study the adsorption of water in single-walled (6:6), (8:8), (10:10), (12:12), and (20:20) carbon nanotubes in the 248-548 K temperature range. At room temperature the resulting adsorption isotherms in (10:10) and wider single-walled carbon nanotubes (SWCNs) are characterized by negligible water uptake at low pressures, sudden and complete pore filling once a threshold pressure is reached, and wide adsorption/desorption hysteresis loops. The width of the hysteresis loops decreases as pore diameter narrows and it becomes negligible for water adsorption in (8:8) and (6:6) SWCNs. Results for the isosteric heat of adsorption, density profiles along the pore axis and across the pore radii, order parameter across the pore radii, and x-ray diffraction patterns are presented. Layered structures are observed when the internal diameter of the nanotubes is commensurate to the establishment of a hydrogen-bonded network. The structure of water in (8:8) and (10:10) SWCNs is ordered when the temperature is 298 and 248 K, respectively. By simulating adsorption isotherms at various temperatures, the hysteresis critical temperature, e.g., the lowest temperature at which no hysteresis can be detected, is determined for water adsorbed in (20:20), (12:12), and (10:10) SWCNs. The hysteresis critical temperature is lower than the vapor-liquid critical temperature for bulk Simple Point Charge-Extended (SPCE) water model.  相似文献   

12.
Grand canonical Monte Carlo simulations are used to study the adsorption of water in single-walled (10:10), (12:12), and (20:20) carbon nanotubes at 298 K. Water is represented by the extended simple point charge model and the carbon atoms as Lennard-Jones spheres. The nanotubes are decorated with different amounts of oxygenated sites, represented as carbonyl groups. In the absence of carbonyl groups the simulated isotherms are characterized by negligible amounts of water uptake at low pressures, sudden and complete pore filling once a threshold pressure is reached, and wide adsorption-desorption hysteresis loops. In the presence of a few carbonyl groups the simulated adsorption isotherms are characterized by pore filling at lower pressures and by narrower adsorption-desorption hysteresis loops compared to the results obtained in the absence of carbonyl groups. Our results show that the distribution of the carbonyl groups has a strong effect on the adsorption isotherms. For carbonyl groups localized in a narrow section the adsorption of water may be gradual because a cluster of adsorbed water forms at low pressures and grows as the pressure increases. For carbonyl groups distributed along the nanotube the adsorption isotherm is of type V.  相似文献   

13.
Single-walled carbon nanotubes (SWCNTs) are a family of structurally related artificial nanomaterials with unusual properties and many potential applications. Most SWCNTs can emit spectrally narrow near-IR fluorescence at wavelengths that are characteristic of their precise diameter and chiral angle. Near-IR fluorimetry therefore offers a powerful approach for identifying the structural species present in SWCNT samples. Such characterization is increasingly important for nanotube production, study, separation, and applications. General-purpose and specialized instruments suitable for SWCNT fluorimetric analysis are described, and methods for interpreting fluorimetric data to deduce the presence and relative abundances of different SWCNT species are presented. Fluorescence methods are highly effective for detecting SWCNTs in challenging samples such as complex environmental or biological specimens because of the methods’ high sensitivity and selectivity and the near absence of interfering background emission at near-IR wavelengths. Current limitations and future prospects for fluorimetric characterization of SWCNTs are discussed.  相似文献   

14.
200 nm-thick super bundles showing a novel polygonization and densely aligned arrangement are found in long single-walled carbon nanotube (SWNT) strands prepared by the vertical floating catalytic method.  相似文献   

15.
Discrete dispersion of single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
Single-walled carbon nanotubes (SWNTs) have been effectively wetted and dispersed in saturated sodium hydroxide (NaOH) alcohol-water solutions with little surface damage or shortening of the tubes; the treated material was dissolvable as individual tubes in many common organic solvents.  相似文献   

16.
Protein-assisted solubilization of single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
We report a simple method that uses proteins to solubilize single-walled carbon nanotubes (SWNTs) in water. Characterization by a variety of complementary techniques including UV-Vis spectroscopy, Raman spectroscopy, and atomic force microscopy confirmed the dispersion at the individual nanotube level. A variety of proteins differing in size and structure were used to generate individual nanotube solutions by this noncovalent functionalization procedure. Protein-mediated solubilization of nanotubes in water may be important for biomedical applications. This method of solubilization may also find use in approaches for controlling the assembly of nanostructures, and the wide variety of functional groups present on the adsorbed proteins may be used as orthogonal reactive handles for the functionalization of carbon nanotubes.  相似文献   

17.
By using the spectral moments method, we calculate the infrared spectra of chiral and achiral single-walled carbon nanotubes (SWCNTs) of different diameters and lengths. We show that the number of the infrared modes, their frequencies, and intensities depend on the length and chirality of the nanotubes. Furthermore, the dependence of the infrared spectrum as a function of the size of the SWCNT bundle is analyzed. These predictions are useful to interpret the experimental infrared spectra of SWCNTs.  相似文献   

18.
How short can single-walled carbon nanotubes (SWNTs) be? How stable are such supershort SWNTs (ss-SWNTs)? This work is the first to address these questions. On the basis of binding energy (E(B)), standard heats of formation , and strain energy (E(S)), we found that SWNTs with only one benzene ring in the axial direction, which we refer to as supershort SWNTs (ss-SWNTs), can be thermodynamically stable. On the basis of the data of E(B), , and E(S), the relative stabilities of ss-SWNTs, fullerenes, polycyclic aromatic hydrocarbons, and butadiyne are discussed. This study has laid a theoretical foundation for the possible synthesis of ss-SWNTs.  相似文献   

19.
20.
The joint adsorption of water and benzene on nanosized carbon tubes (NCTs) (with a specific surface area of 413 m2/g) synthesized by carbonizing methylene chloride in cylindrical pores of an Al2O3 matrix was studied. 1H NMR spectroscopy with layer-by-layer freezing of the liquid phase was used to characterize the water bound in pores at various contents of benzene and water. Due to its higher energy of interaction with carbon surfaces, benzene was demonstrated to decrease the energy of interaction of water with the surface of the NCT sample from 43 to 15 J/g. It was suggested that, in the presence of benzene, H-bonded water clusters only weakly bound to the surface are formed in the cylindrical cavities of the NCTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号