首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective methods for manipulating, isolating and sorting cells and particles are essential for the development of microfluidic-based life science research and diagnostic platforms. We demonstrate an integrated optical platform for cell and particle sorting in microfluidic structures. Fluorescent-dyed particles are excited using an integrated optical waveguide network within micro-channels. A diode-bar optical trapping scheme guides the particles across the waveguide/micro-channel structures and selectively sorts particles based upon their fluorescent signature. This integrated detection and separation approach streamlines microfluidic cell sorting and minimizes the optical and feedback complexity commonly associated with extant platforms.  相似文献   

2.
Insulator-based dielectrophoretic (iDEP) microdevices have been limited to work with Newtonian fluids. We report an experimental study of the fluid rheological effects on iDEP focusing and trapping of polystyrene particles in polyethylene oxide, xanthan gum, and polyacrylamide solutions through a constricted microchannel. Particle focusing and trapping in the mildly viscoelastic polyethylene oxide solution are slightly weaker than in the Newtonian buffer. They are, however, significantly improved in the strongly viscoelastic and shear thinning polyacrylamide solution. These observed particle focusing behaviors exhibit a similar trend with respect to electric field, consistent with a revised theoretical analysis for iDEP focusing in non-Newtonian fluids. No apparent focusing of particles is achieved in the xanthan gum solution, though the iDEP trapping can take place under a much larger electric field than the other fluids. This is attributed to the strong shear thinning-induced influences on both the electroosmotic flow and electrokinetic/dielectrophoretic motions.  相似文献   

3.
Single over-the-counter medication tablets were analyzed in real time using Single Particle Aerosol Mass Spectrometry (SPAMS). Dual-polarity time-of-flight mass spectra were obtained for micrometer-sized single particles dislodged from a single tablet without destroying the shape or markings of each tablet. The solid tablet was placed in a modified-top glass vial and shaken to dislodge and introduce micrometer-sized particles into the SPAMS system. Unique spectra from these particles were obtained in less than 1 s for single tablets of aspirin, ibuprofen, pseudoephedrine, phenylephrine, loratadine, or diphenhydramine. The signals obtained allowed the non-destructive identification of an individual tablet in seconds. SPAMS presents an ideal system for high-throughput analysis of solid drugs.  相似文献   

4.
 Micron-sized, monodispersed polystyrene/poly(3,5-xylidine) composite polymer particles were produced by chemical oxidative seeded polymerization of 3,5-xylidine with 1.37-μm-sized, monodispersed polystyrene seed particles. The chemical oxidative seeded polymerization was conducted in an aqueous medium at 25 °C in the presence of poly(vinyl alcohol) as a stabilizer using ammonium persulfate as an oxidant. The composite particles had a multihollow structure. Received: 30 June 1999/Accepted in revised form: 21 October 1999  相似文献   

5.
Two kinds of temperature-sensitive composite polymer particles were prepared by seeded emulsion copolymerizations of (dimethylamino)ethyl methacrylate and ethylene glycol dimethacrylate with 0.14 μm-sized polystyrene and 0.26 μm-sized poly(methylmethacrylate) seed particles. To evaluate the usefulness as a carrier for biomolecules, the enzymatic activities of trypsin adsorbed on these two composite polymer particles were measured at temperatures above and below each lower critical solution temperature (LCST). In both cases, adsorbed trypsin retained its enzymatic activity during repeated adsorption/desorption measurements. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 883–888, 1998  相似文献   

6.
For the purpose of extending the size range of polymer seed particles used in “dynamic swelling method” (DSM), first it was verified theoretically that the submicron-sized polymer particles produced by emulsion polymerization can also absorb a large amount of monomer by DSM in both equilibrium and kinetic control states. Next, on the basis of the theoretical results, experimentally about 2.6 μm-sized styrene-swollen polystyrene (PS) particles were prepared utilizing DSM in the presence of 0.64 μm-sized monodispersed PS seed particles produced by emulsifier-free emulsion polymerization. Moreover, 2.5 μm-sized monodispersed PS particles were produced by the addition of cupric chloride as a water-soluble inhibitor to depress the by-production of submicron-sized PS particles in the seeded polymerization at 30°C with 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile) initiator. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2513–2519, 1998  相似文献   

7.
Core polystyrene microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Uniform polyglycidyl methacrylate/polystyrene core-shell micrometer-sized particles were prepared by emulsion polymerization at 73 degrees C of glycidyl methacrylate in the presence of the core polystyrene microspheres. Core-shell particles with different properties (size, surface morphology and composition) have been prepared by changing various parameters belonging to the above seeded emulsion polymerization process, e.g., volumes of the monomer glycidyl methacrylate and the crosslinker monomer ethylene glycol dimethacrylate. Magnetic Fe(3)O(4)/polyglycidyl methacrylate/polystyrene micrometer-sized particles were prepared by coating the former core-shell particles with magnetite nanoparticles via a nucleation and growth mechanism. Characterization of the various particles has been accomplished by routine methods such as light microscopy, SEM, FTIR, BET and magnetic measurements.  相似文献   

8.
4 μm-sized monodispersed cross-linked polymer particles having hollow structure were produced as follows. First, 1.7 μm-sized monodispersed polystyrene (PS) seed particles produced by dispersion polymerization were dispersed in ethanol/water (7/3, w/w) solution in which divinylbenzene (DVB), benzoyl peroxide (BPO), poly(vinyl alcohol), and toluene was dissolved. The PS seed particles were swollen with DVB, toluene and BPO maintaining high monodispersity throughout the dynamic swelling process where water was slowly added continuously. And then, the seeded polymerization of the (toluene/DVB)-swollen PS particles was carried out.  相似文献   

9.
Micrometer-sized polystyrene template particles of narrow size distribution were prepared by dispersion polymerization of styrene in 2-methoxyethanol. Uniform micrometer-sized polystyrene/crosslinked poly(styrene-divinyl benzene) composite particles were formed by a single-step swelling process of the template particles with styrene, divinyl benzene and benzoyl peroxide, followed by polymerization at 70 degrees C. Uniform micrometer-sized crosslinked poly(styrene-divinyl benzene) particles of higher surface area were produced by dissolution of the template polystyrene part of the former composite particles with N,N-dimethylformamide. Hydroperoxide conjugated crosslinked poly(styrene-divinyl benzene) particles were produced by ozonolysis of these particles. The effect of ozonolysis conditions, such as exposure time and flow rate of the ozone, on the hydroperoxide conjugation to the crosslinked particles was also studied. Functionalization of the crosslinked poly(styrene-divinyl benzene) particles was performed by graft polymerization of vinylic monomers such as acrylonitrile and chloromethylstyrene on the hydroperoxide conjugated crosslinked particles. This was accomplished by raising the temperature (e.g., 70 degrees C) of deairated acetonitrile dispersions containing the hydroperoxide conjugated particles and the vinylic monomers. The influence of various polymerization parameters on the grafting yield, e.g., monomer concentration, conjugated hydroperoxide concentration, and temperature, was also elucidated.  相似文献   

10.
 Micron-sized mono-dispersed polystyrene (PS)/poly(n-butyl methacrylate) (PBMA) composite particles (PS/PBMA=2/1 by weight) having a heterogeneous structure in which many fine PBMA domains dispersed in a PS matrix near the particle surface were produced by seeded polymerization of n-butyl methacrylate (BMA) of which almost all had been absorbed by 1.8 μm-sized monodispersed PS seed particles utilizing the dynamic swelling method. The morphology was varied by changing the PS/BMA ratio and polymerization temperature. It was concluded that the swelling state of 2 μm-sized BMA-swollen PS particles in the seeded polymerization process is one of the important factors to control the morphology of the composite particles. Received: 27 November 1996 Accepted: 21 March 1997  相似文献   

11.
We demonstrate dielectrophoretic (DEP) potential wells using pairs of insulating oil menisci to shape the DC electric field. These oil menisci are arranged in a configuration similar to the quadrupolar electrodes, typically used in DEP, and are shown to produce similar field gradients. While the one-pair well produces a focusing effect on particles in flow, the two-pair well results in creating spatial traps against crossflows. Uncharged polystyrene particles were used to map the DEP force fields and the experimental observations were compared against the field profiles obtained by numerically solving Maxwell's equations. We demonstrate trapping of a single particle due to negative DEP against a pressure-driven crossflow. This can be easily extended to trap and hold cells and other objects against flow for a longer time. We also show the results of particle trapping experiments performed to observe the effect of adjusting the oil menisci and the gap between two pairs of menisci in a four-menisci configuration on the nature of the DEP well formed at the center. A design parameter, Theta, capturing the dimensions of the DEP energy well, is defined and simulations exploring the effects of different geometric features on Theta are presented.  相似文献   

12.
Lin S  Crozier KB 《Lab on a chip》2011,11(23):4047-4051
We demonstrate the trapping of particles with silicon microring resonators integrated with waveguides. Multiple microrings with different resonant wavelengths are integrated with each waveguide. We demonstrate that tuning the laser wavelength to the resonance wavelengths of different rings enables trapped particles to be transferred back and forth between the rings. We demonstrate that the change in output power arising from particle-induced resonance shift enables the real-time monitoring of trapped particles, such as their number and velocities, without the need for an external imaging system. The techniques we describe here could form the basis for small footprint systems in which objects are moved between multiple locations on a chip, at each of which different operations are performed and the objects' properties sensed.  相似文献   

13.
We report the assembly of colloidal particles into confined arrangements and patterns on various cleaned and chemically modified solid substrates using a method which we term "confined dewetting lithography" or CDL for short. The experimental setup for CDL is a simple deposition cell where an aqueous suspension of colloidal particles (e.g., polystyrene spheres) is placed between a floating deposition template (i.e., metal microgrid) and the solid substrate. The voids of the deposition template serve as an array of micrometer-sized reservoirs where several hydrodynamic processes are confined. These processes include water evaporation, meniscus formation, convective flow, rupturing, dewetting, and capillary-bridge formation. We discuss the optimal conditions where the CDL has a high efficiency to deposit intricate patterns of colloidal particles using polystyrene spheres (PS; 4.5, 2.0, 1.7, 0.11, 0.064 microm diameter) and square and hexagonal deposition templates as model systems. We find that the optimization conditions of the CDL method, when using submicrometer, sulfate-functionalized PS particles, are primarily dependent on minimizing attractive particle-substrate interactions. The CDL methodology described herein presents a relatively simple and rapid method to assemble virtually any geometric pattern, including more complex patterns assembled using PS particles with different diameters, from aqueous suspensions by choosing suitable conditions and materials.  相似文献   

14.
We investigate the problem of heat conduction across molecular junctions connecting two nanoparticles, both in vacuum and in a liquid environment, using classical molecular dynamics simulations. In vacuum, the well-known result of a length independent conductance is recovered; its precise value, however, is found to depend sensitively on the overlap between the vibrational spectrum of the junction and the density of states of the nanoparticles that act as thermal contacts. In a liquid environment, the conductance is constant up to a crossover length, above which a standard Fourier regime is recovered.  相似文献   

15.
Micrometer-sized polystyrene particles form two-dimensional crystals in alternating current (ac) electric fields. The induced dipole-dipole interaction is the dominant force that drives this assembly. We report measurements of forces between colloidal particles in ac electric fields using optical tweezers and find good agreement with the point dipole model. The magnitude of the pair interaction forces depends strongly on the bulk solution conductivity and decreases as the ionic strength increases. The forces also decrease with increasing field frequency. The salt and frequency dependences are consistent with double layer polarization with a characteristic relaxation frequency omega(CD) approximately a(2)/D, where a is the particle radius and D is the ion diffusivity. This enables us to reinterpret the order-disorder transition reported for micrometer-sized polystyrene particles [Lumsdon et al., Langmuir 20, 2108 (2004)], including the dependence on particle size, frequency, and ionic strength. These results provide a rational framework for identifying assembly conditions of colloidal particles in ac fields over a wide range of parameters.  相似文献   

16.
Seeded dispersion polymerization of styrene with 1.77-µm-sized, monodisperse poly(methyl methacrylate) seed particles was carried out in a methanol/water medium (8/2, w/w) in the presence of decalin droplets. The monodisperse poly(methyl methacrylate)/polystyrene composite particles produced had a large number of dents on their surfaces. The effects of the amount of decalin in the polymerization system on the number, the diameter, and the depth of the dents on the surface of the composite particles were clarified.  相似文献   

17.
We report a systematic study of the dependence of the output efficiency and scattering efficiency on crossing angle, guided wavelength, and junction size in polymer nanofiber waveguide junctions. The junctions were assembled by using poly(trimethylene terephthalate) nanofibers (PNFs) with diameters of 200–800 nm under an optical microscope with the assistant of micromanipulators. A Chinese character and an SU pattern based the PNF junction technique have been demonstrated, moreover, the junction technique has also been expanded to various elastic substrates instead of glass substrate with high robustness. To further demonstrate the ability of modulating light of using the junction technique, we fabricated rugby‐shaped microresonators based on the polymer fiber junction, which exhibited high Q factor up to 105. Furthermore, the microresonators can incorporate dyes or quantum dots into them, acting as active devices. We believe that the polymer fiber junction technique would provide a versatile platform for investigating light modulation or light matter interaction in various cavities with different configuration. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 833–840  相似文献   

18.
 About 2-μm-sized polystyrene (PS) particles having uneven surfaces were prepared by a posttreatment in which toluene-swollen PS particles were thrown into a methanol bath to release toluene therefrom rapidly. The posttreatment was named the “solvent-absorbing/releasing method”. The PS particle had large dents at the surface. The size of the dents was changed by the conditions of the posttreatment. Received: 3 August 1999/Accepted: 1 March 2000  相似文献   

19.
Waveguide trapping has emerged as a useful technique for parallel and planar transport of particles and biological cells and can be integrated with lab-on-a-chip applications. However, particles trapped on waveguides are continuously propelled forward along the surface of the waveguide. This limits the practical usability of the waveguide trapping technique with other functions (e.g. analysis, imaging) that require particles to be stationary during diagnosis. In this paper, an optical waveguide loop with an intentional gap at the centre is proposed to hold propelled particles and cells. The waveguide acts as a conveyor belt to transport and deliver the particles/cells towards the gap. At the gap, the diverging light fields hold the particles at a fixed position. The proposed waveguide design is numerically studied and experimentally implemented. The optical forces on the particle at the gap are calculated using the finite element method. Experimentally, the method is used to transport and trap micro-particles and red blood cells at the gap with varying separations. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip, e.g. microfluidics or optical detection, to make an on-chip system for single cell analysis and to study the interaction between cells.  相似文献   

20.
We propose a series of carbon nanostructures in the shape of tetrapod as a kind of three-dimensional junction for carbon nanotubes. The tetrapod junctions are such open networks that are made of sp2 carbon atoms only, have negative Gaussian curvature, and connect four nanotubes together. We define the structure of standard tetrapod junctions, the simplest one, that have 12 heptagons other than hexagons and have the Td symmetry.Our tight-binding energy-band calculations for the standard tetrapod junctions of smaller sizes show that their electronic property mainly depends on one particular topological factor: the junctions having a carbon atom in the center of each triangular face of tetrahedron exhibit metallic band structure while the junctions having a benzene ring in the center of the faces are semiconductors. We also find that tetrapod junctions connecting (6,0) nanotubes exhibit a flat band near the Fermi energy in a particular momentum region. The origin of the flat band states can be figured out from the wavefunction distribution. We also show the possibility to extend the standard tetrapod junctions to some non-standard ones that can connect nanotubes of different kinds and/or radii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号