首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The azo-azomethine imines, R1-N=N-R2-CH=N-R3, are a class of active pharmacological ligands that have been prominent antifungal, antibacterial, and antitumor agents. In this study, four new azo-azomethines, R1 = Ph, R2 = phenol, and R3 = pyrazol-Ph-R’ (R = H or NO2), have been synthesized, structurally characterized using X-ray, IR, NMR and UV–Vis techniques, and their antifungal activity evaluated against certified strains of Candida albicans and Cryptococcus neoformans. The antifungal tests revealed a high to moderate inhibitory activity towards both strains, which is regulated as a function of both the presence and the location of the nitro group in the aromatic ring of the series. These biological assays were further complemented with molecular docking studies against three different molecular targets from each fungus strain. Molecular dynamics simulations and binding free energy calculations were performed on the two best molecular docking results for each fungus strain. Better affinity for active sites for nitro compounds at the “meta” and “para” positions was found, making them promising building blocks for the development of new Schiff bases with high antifungal activity.  相似文献   

2.
Nowadays, discovering new skeleton antifungal drugs is the direct way to address clinical fungal infections. Pyrylium salt SM21 was screened from a library containing 50,240 small molecules. Several studies about the antifungal activity and mechanism of SM21 have been reported, but the structure–activity relationship of pyrylium salts was not clear. To explore the chemical space of antifungal pyrylium salt SM21, a series of pyrylium salt derivatives were designed and synthesized. Their antifungal activity and structure-activity relationships (SAR) were investigated. Compared with SM21, most of the synthesized compounds exhibited equivalent or improved antifungal activities against Candida albicans in vitro. The synthesized compounds, such as XY10, XY13, XY14, XY16 and XY17 exhibited comparable antifungal activities against C. albicans with MIC values ranging from 0.47 to 1.0 μM. Fortunately, a compound numbered XY12 showed stronger antifungal activities and lower cytotoxicity was obtained. The MIC of compound XY12 against C. albicans was 0.24 μM, and the cytotoxicity decreased 20-fold as compared to SM21. In addition, XY12 was effective against fluconazole-resistant C. albicans and other pathogenic Candida species. More importantly, XY12 could significantly increase the survival rate of mice with a systemic C. albicans infection, which suggested the good antifungal activities of XY12 in vitro and in vivo. Our results indicated that structural modification of pyrylium salts could lead to the discovery of new antifungal drugs.  相似文献   

3.
Herein, we investigated the surface characterization and biocompatibility of a denture-lining material containing Cnidium officinale extracts and its antifungal efficacy against Candida albicans. To achieve this, a denture-lining material containing various concentrations of C. officinale extract and a control group without C. officinale extract were prepared. The surface characterization and biocompatibility of the samples were investigated. In addition, the antifungal efficacy of the samples on C. albicans was investigated using spectrophotometric growth and a LIVE/DEAD assay. The results revealed that there was no significant difference between the biocompatibility of the experimental and control groups (p > 0.05). However, there was a significant difference between the antifungal efficiency of the denture material on C. albicans and that of the control group (p < 0.05), which was confirmed by the LIVE/DEAD assay. These results indicate the promising potential of the C. officinale extract-containing denture-lining material as an antifungal dental material.  相似文献   

4.
A series of triazole derivatives containing phenylethynyl pyrazole moiety as side chain were designed, synthesized, and most of them exhibited good in vitro antifungal activities. Especially, compounds 5k and 6c showed excellent in vitro activities against C. albicans (MIC = 0.125, 0.0625 μg/mL), C. neoformans (MIC = 0.125, 0.0625 μg/mL), and A. fumigatus (MIC = 8.0, 4.0 μg/mL). Compound 6c also exerted superior activity to compound 5k and fluconazole in inhibiting hyphae growth of C. albicans and inhibiting drug-resistant strains of C. albicans, and it could reduce fungal burdens in mice kidney at a dosage of 1.0 mg/kg. An in vivo efficacy evaluation indicated that 6c could effectively protect mice models from C. albicans infection at doses of 0.5, 1.0, and 2.0 mg/kg. These results suggested that compound 6c deserves further investigation.  相似文献   

5.
To improve the proinsecticidal activity and phloem mobility of amino acid–tralopyril conjugates further, nine conjugates were designed and synthesized by introducing glutamic acid to tralopyril, and the length of the linker between glutamic acid and tralopyril ranged from 2 atoms to 10 atoms. The results of insecticidal activity against the third-instar larvae of P. xylostella showed that conjugates 42, 43, 44,and 45 (straight-chain containing 2–5 atoms) exhibited good insecticidal activity, and their LC50 values were 0.2397 ± 0.0366, 0.4413 ± 0.0647, 0.4400 ± 0.0624, and 0.4602 ± 0.0655 mM, respectively. The concentrations of conjugates 43–45 were higher than that of conjugate 42 in the phloem sap at 2 h, and conjugate 43 showed the highest concentration. The introduction of glutamic acid can improve phloem mobility. The in vivo metabolism of conjugates 42 and 43 was investigated in P. xylostella, and the parent compound tralopyril was detected at concentrations of 0.5950 and 0.3172 nmol/kg, respectively. According to the above results, conjugates 42 and 43 were potential phloem mobile pro-insecticide candidates.  相似文献   

6.
Our study aimed to characterise the action mode of N-phenacyldibromobenzimidazoles against C. albicans and C. neoformans. Firstly, we selected the non-cytotoxic most active benzimidazoles based on the structure–activity relationships showing that the group of 5,6-dibromobenzimidazole derivatives are less active against C. albicans vs. 4,6-dibromobenzimidazole analogues (5e–f and 5h). The substitution of chlorine atoms to the benzene ring of the N-phenacyl substituent extended the anti-C. albicans action (5e with 2,4-Cl2 or 5f with 3,4-Cl2). The excellent results for N-phenacyldibromobenzimidazole 5h against the C. albicans reference and clinical isolate showed IC50 = 8 µg/mL and %I = 100 ± 3, respectively. Compound 5h was fungicidal against the C. neoformans isolate. Compound 5h at 160–4 µg/mL caused irreversible damage of the fungal cell membrane and accidental cell death (ACD). We reported on chitinolytic activity of 5h, in accordance with the patterns observed for the following substrates: 4-nitrophenyl-N-acetyl-β-d-glucosaminide and 4-nitrophenyl-β-d-N,N′,N″-triacetylchitothiose. Derivative 5h at 16 µg/mL: (1) it affected cell wall by inducing β-d-glucanase, (2) it caused morphological distortions and (3) osmotic instability in the C. albicans biofilm-treated. Compound 5h exerted Candida-dependent inhibition of virulence factors.  相似文献   

7.
Despite Alzheimer’s disease (AD) incidence being projected to increase worldwide, the drugs currently on the market can only mitigate symptoms. Considering the failures of the classical paradigm “one target-one drug-one disease” in delivering effective medications for AD, polypharmacology appears to be a most viable therapeutic strategy. Polypharmacology can involve combinations of multiple drugs and/or single chemical entities modulating multiple targets. Taking inspiration from an ongoing clinical trial, this work aims to convert a promising cromolyn–ibuprofen drug combination into single-molecule “codrugs.” Such codrugs should be able to similarly modulate neuroinflammatory and amyloid pathways, while showing peculiar pros and cons. By exploiting a linking strategy, we designed and synthesized a small set of cromolyn–ibuprofen conjugates (4–6). Preliminary plasma stability and neurotoxicity assays allowed us to select diamide 5 and ethanolamide 6 as promising compounds for further studies. We investigated their immunomodulatory profile in immortalized microglia cells, in vitro anti-aggregating activity towards Aβ42-amyloid self-aggregation, and their cellular neuroprotective effect against Aβ42-induced neurotoxicity. The fact that 6 effectively reduced Aβ-induced neuronal death, prompted its investigation into an in vivo model. Notably, 6 was demonstrated to significantly increase the longevity of Aβ42-expressing Drosophila and to improve fly locomotor performance.  相似文献   

8.
Guatteria olivacea R. E. Fries (synonym Guatteria punctata (Aubl.) R.A. Howard) is a tree of 10–27 m tall popularly known as “envira-bobó”, “envira-fofa”, “envireira”, “embira”, “embira-branca”, “embira-preta”, envira-branca”, and “envira-preta”, which can be found in the Brazilian Amazon biome. In this study, we evaluated the cytotoxic and antitumor effects of the essential oil (EO) obtained from the leaves of G. olivacea against liver cancer using HepG2 cells as a model. EO was obtained using a hydrodistillation Clevenger-type apparatus and was qualitatively and quantitatively characterized using GC–MS and GC–FID, respectively. The alamar blue assay was used to assess the cytotoxic potential of EO in a panel of human cancer cell lines and human non-cancerous cells. In HepG2 cells treated with EO, YO-PRO-1/propidium iodide staining, cell cycle distribution, and reactive oxygen species (ROS) were examined. In C.B-17 SCID mice with HepG2 cell xenografts, the efficacy of the EO (20 and 40 mg/kg) was tested in vivo. GC–MS and GC–FID analyses showed germacrene D (17.65%), 1-epi-cubenol (13.21%), caryophyllene oxide (12.03%), spathulenol (11.26%), (E)-caryophyllene (7.26%), bicyclogermacrene (5.87%), and δ-elemene (4.95%) as the major constituents of G. olivacea leaf EO. In vitro cytotoxicity of EO was observed, including anti-liver cancer action with an IC50 value of 30.82 μg/mL for HepG2 cells. In HepG2 cells, EO treatment increased apoptotic cells and DNA fragmentation, without changes in ROS levels. Furthermore, the EO inhibited tumor mass in vivo by 32.8–57.9%. These findings suggest that G. olivacea leaf EO has anti-liver cancer potential.  相似文献   

9.
RGD-cryptophycin and isoDGR-cryptophycin conjugates were synthetized by combining peptidomimetic integrin ligands and cryptophycin, a highly potent tubulin-binding antimitotic agent across lysosomally cleavable Val-Ala or uncleavable linkers. The conjugates were able to effectively inhibit binding of biotinylated vitronectin to integrin αvβ3, showing a binding affinity in the same range as that of the free ligands. The antiproliferative activity of the novel conjugates was evaluated on human melanoma cells M21 and M21-L with different expression levels of integrin αvβ3, showing nanomolar potency of all four compounds against both cell lines. Conjugates containing uncleavable linker show reduced activity compared to the corresponding cleavable conjugates, indicating efficient intracellular drug release in the case of cryptophycin-based SMDCs. However, no significant correlation between the in vitro biological activity of the conjugates and the integrin αvβ3 expression level was observed, which is presumably due to a non-integrin-mediated uptake. This reveals the complexity of effective and selective αvβ3 integrin-mediated drug delivery.  相似文献   

10.
The treatment of benzylidenemalononitriles with phenylhydrazines in refluxing ethanol did not provide pyrazole derivatives, but instead furnished hydrazones. The structure of hydrazones was secured by X-ray analysis. The chemical proof was also obtained by direct reaction of 3,4,5-trimethoxybenzaldehyde with 2,4-dichlorophenylhydrazine. Newly synthesized hydrazones were tested against eight Candida spp. strains in a dose response assay to determine the minimum inhibitory concentration (MIC99). Five compounds were identified as promising antifungal agents against Candida spp. (C. albicans SC5314, C. glabrata, C. tropicalis, C. parapsilosis and C. glabrata (R azoles)), with MIC99 values ranging from 16 to 32 µg/mL and selective antifungal activity over cytotoxicity.  相似文献   

11.
The residue after sieving (“dust”) from the willow gentian underground parts is an unexploited herbal tea by-product, although it contains valuable bioactive compounds. Cyclodextrins as efficient green co-solvents, cage molecules, and multifunctional excipients could improve the extraction and contribute to the added value of the resulting extracts. The objective of this study was to determine the optimal conditions for the extraction of gentiopicroside, isogentisin, and total phenolics (TPC) from willow gentian “dust” using ultrasound-assisted water extraction coupled with hydroxypropyl-β-cyclodextrin (HPβCD). The influence of extraction temperature (X1: 20–80 °C), time (X2: 20–50 min), and HPβCD concentration (X3: 2–4% w/v) was analyzed employing the response surface methodology (RSM). The optimal extraction conditions for simultaneously maximizing the extraction yield of all monitored responses were X1: 74.89 °C, X2: 32.57 min, and X3: 3.01% w/v. The experimentally obtained response values under these conditions (46.96 mg/g DW for gentiopicroside, 0.51 mg/g DW for isogentisin, and 12.99 mg GAE/g DW for TPC) were in close agreement with those predicted, thus confirming the suitability and good predictive accuracy of the developed RSM models. Overall, the developed extraction system could be an applicable alternative strategy to improve the extraction of bioactive compounds from the underutilized “dust” of willow gentian underground parts.  相似文献   

12.
Twenty-four analogs based on triazinoindole bearing benzimidazole/benzoxazole moieties (1–25) were synthesized. Utilizing a variety of spectroscopic methods, including 1H-, 13C-NMR, and HREI-MS, the newly afforded compounds (1–25) were analyzed. The synthesized analogs were tested against urease enzyme (in vitro) as compared to the standard thiourea drug. All triazinoindole-based benzimidazole/benzoxazole analogs (1–25) exhibited moderate to excellent inhibition profiles, having IC50 values of 0.20 ± 0.01 to 36.20 ± 0.70 μM when evaluated under the positive control of thiourea as a standard drug. To better understand the structure–activity relationship, the synthesized compounds were split into two groups, “A” and “B.” Among category “A” analogs, analogs 8 (bearing tri-hydroxy substitutions at the 2,4,6-position of aryl ring C) and 5 (bearing di-hydroxy substitutions at the 3,4-position of aryl ring C) emerged as the most potent inhibitors of urease enzyme and displayed many times more potency than a standard thiourea drug. Besides that, analog 22 (which holds di-hydroxy substitutions at the 2,3-position of the aryl ring) and analog 23 (bearing ortho-fluoro substitution) showed ten-fold-enhanced inhibitory potential compared to standard thiourea among category “B” analogs. Molecular docking studies on the active analogs of each category were performed; the results obtained revealed that the presence of hydroxy and fluoro-substitutions on different positions of aryl ring C play a pivotal role in binding interactions with the active site of the targeted urease enzyme.  相似文献   

13.
《中国化学快报》2022,33(9):4345-4349
Phosphorylated di-, tri- and tetra-saccharides of β-1,2-mannan antigen derived from Candida albicans (C. albicans) cell wall were synthesized and covalently conjugated with keyhole limpet hemocyanin (KLH) and human serum albumin (HSA) via a bifunctional linker under mild conditions. The semi-synthetic β-1,2-mannoside–KLH conjugates were evaluated for the immunization of BALB/c mice. The ELISA results revealed that all three conjugates could elicit high levels of specific IgG antibodies and the acquired antisera could effectively identify the β-1,2-mannan epitope. Furthermore, the immunofluorescence and flow cytometry assays also uncovered that the induced antibodies, especially that obtained from immunization with β-1,2-mannotriose–KLH conjugate (1b), could bind well to fungi cell. Eventually, the structure–immunogenicity relationship analysis of β-mannan showed that the length of oligo-β-mannoses had a big impact on their immunogenicity and β-1,2-mannotriose showed the strongest immunogenicity. The results suggested the great potential of β-1,2-mannotriose–KLH conjugate as an antifungal vaccine candidate.  相似文献   

14.
The design, synthesis, and electronic properties of a new series of D–π–A conjugates consisting of free base (H2P) and zinc porphyrins (ZnP) as electron donors and a fullerene (C60) as electron acceptor, in which the two electroactive entities are covalently linked through pyridine-vinylene spacers of different lengths, are described. Electronic interactions in the ground state were characterized by electrochemical and absorption measurements, which were further supported with theoretical calculations. Most importantly, charge-transfer bands were observed in the absorption spectra, indicating a strong pushpull behavior. In the excited states, electronic interactions were detected by selective photoexcitation under steady-state conditions, by time-resolved fluorescence investigations, and by pump probe experiments on the femto-, pico-, and nanosecond time scales. Porphyrin fluorescence is quenched for the different D–π–A conjugates, from which we conclude that the deactivation mechanisms of the excited singlet states are based on photoinduced energy- and/or electron transfer processes between H2P/ZnP and C60, mediated through the molecular spacers. The fluorescence intensity decreases and the fluorescence lifetimes shorten as the spacer length decreases and as the spacer substitution changes. With the help of transient absorption spectroscopy, the formation of charge-separated states involving oxidized H2P/ZnP and reduced C60 was confirmed. Lifetimes of the corresponding charge-separated states, which ranged from ∼400 picoseconds to 165 nanoseconds, depend on the spacer length, the spacer substitution, and the solvent polarity. Interestingly, D–π–A conjugates containing the longest linkers did not necessarily exhibit the longest charge-separated state lifetimes. The distances between the electron donors and the acceptors were calculated by molecular modelling. The longest charge-separated state lifetime corresponded to the D–π–A conjugate with the longest electron donor–acceptor distance. Likewise, EPR measurements in frozen media revealed charge separated states in all the D–π–A conjugates investigated. A sharp peak with g values ∼2.000 was assigned to reduced C60, while a broader, less intense signal (g ∼ 2.003) was assigned to oxidized H2P/ZnP. On–off switching of the formation and decay of the charge-separated states was detected by EPR at 77 K by repeatedly turning the irradiation source on and off.  相似文献   

15.
The increasing prevalence of microbial infections and the emergence of resistance to the currently available antimicrobial drugs urged the development of potent new chemical entities with eminent pharmacokinetic and/or pharmacodynamic profiles. Thus, a series of new indole-triazole conjugates 6a-u was designed and synthesized to be assessed as new antimicrobial candidates using the diameter of the inhibition zone and minimum inhibitory concentration assays against certain microbial strains. Their in vitro antibacterial evaluation revealed good to moderate activity against most of the tested Gram-negative strains with diameter of the inhibition zone (DIZ) values in the range of 11–15 mm and minimum inhibition concentration (MIC) values around 250 µg/mL. Meanwhile, their in vitro antifungal evaluation demonstrated a potent activity against Candida tropicalis with MIC value as low as 2 µg/mL for most of the tested compounds. Moreover, compound 6f is the most potent congener with an MIC value of 2 µg/mL against Candida albicans.  相似文献   

16.
A series of novel pinanyl pyrimidine amine derivatives (1e~1n) and camphoryl pyrimidine amine derivatives (2b~2f) bearing bicyclic monoterpene moieties were designed and synthesized from natural and renewable nopinone and camphor. All chemical structures of target compounds were characterized by 1H NMR, 13C NMR and HRMS spectra analyses, and the antimicrobial activities were evaluated. The results indicated that most compounds showed considerable antibacterial and antifungal activities against Klebsiella pneumoniae, Streptococcus pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Methicillin-Resistant Staphylococcus aureus (MRSA), Bacillus cereus and Candida albicans. Among them, 1f showed potent antibacterial activity against all tested bacteria, 1i exhibited excellent inhibition against Streptococcus pneumoniae (1 μg/mL) and Escherichia coli (1 μg/mL), which was better than the control drug amikacin (2 μg/mL). As to antifungal activity against Candida albicans (C. albicans), compound 1l showed comparable activity (16 μg/mL) to the control drug ketoconazole. Furthermore, five active compounds with better antimicrobial activities also showed anti-inflammatory potencies against mouse mononuclear macrophages leukemia cells (RAW). Especially, 1f (IC50 = 1.37 μM) and 2f (IC50 = 1.87μM) are more potent than the control drug aspirin (IC50 = 1.91 μM).  相似文献   

17.
Five new dimer compounds, namely Taiwaniacryptodimers A–E (1–5), were isolated from the methanol extract of the roots of Taiwania cryptomerioides. Their structures were established by mean of spectroscopic analysis and comparison of NMR data with those of known analogues. Their antifungal activities were also evaluated. Our results indicated that metabolites 1, 2, 4, and 5 displayed moderate antifungal activities against Aspergillus niger, Penicillium italicum, Candida albicans, and Saccharomyces cerevisiae.  相似文献   

18.
The invasion of opportunistic pleiomorphic Candida albicans into oral cavity environment leads to development and progression of its resistance to both naturally occurring antifungal peptides in human saliva as well as commercially available antifungal therapies. As a result of this, the usage and popularity of natural medicine and dentifrices had increased significantly in the last decade. In the present investigation, we have assessed the action of locally available dentifrices against C. albicans biofilm. Disk diffusion test showed maximum zone of inhibition (20?mm) by herbal dentifrice (D-5) as compared to other dentifrices when incubated at 37?°C and 48?h. Assessment of dentifrice D-5 for its effectiveness against C. albicans was further shown in MIC90 (3.12?mg?mL?1) and SMIC90 (6.2?mg?mL?1) values for planktonic and sessile cells (biofilm forming), respectively. Our data depicted 80% reduction in the cell surface hydrophobicity when 6.2?mg?mL?1 of herbal dentifrice D-5 was used against 48-h grown Candida biofilm at 37?°C. Visualization of herbal dentifrice D-5-treated C. albicans biofilm under SEM revealed drastic reduction in the dense network of yeast, hyphae, and pseudohyphae enclosed in its ECM as compared to its control biofilm. The data were further supported by CLSM analysis which depicted C. albicans architecture disruption by herbal dentifrices. From the above data, it is inferred that these studies would provide researchers and medical practitioners with better insight into the antifungal effect of natural herbal dentifrices.  相似文献   

19.
Candida albicans is the most commonly implicated agent in invasive human fungal infections. The disease could be presented as minimal symptomatic candidemia or can be fulminant sepsis. Candidemia is associated with a high rate of mortality and high healthcare and hospitalization costs. The surveillance programs have reported the distribution of other Candida species reflecting the trends and antifungal susceptibilities. Previous studies have demonstrated that C. glabrata more frequently presents fluconazole-resistant strains. Extracts from Mexican plants have been reported with activity against pulmonary mycosis, among them Colubrina greggii. In the present study, extracts from the aerial parts (leaves, flowers, and fruits) of this plant were evaluated against clinical isolates of several species of Candida (C. albicans, C. glabrata, C. parapsilosis, C. krusei, and C. tropicalis) by the broth microdilution assay. Through bioassay-guided fractionation, three antifungal glycosylated flavonoids were isolated and characterized. The isolated compounds showed antifungal activity only against C. glabrata resistant to fluconazole, and were non-toxic toward brine shrimp lethality bioassay and in vitro Vero cell line assay. The ethyl acetate and butanol extracts, as well as the fractions containing the mixture of flavonoids, were more active against Candida spp.  相似文献   

20.
Intermolecular bonding attraction at π-bonded centers is often described as “electrostatically driven” and given quasi-classical rationalization in terms of a “pi hole” depletion region in the electrostatic potential. However, we demonstrate here that such bonding attraction also occurs between closed-shell ions of like charge, thereby yielding locally stable complexes that sharply violate classical electrostatic expectations. Standard DFT and MP2 computational methods are employed to investigate complexation of simple pi-bonded diatomic anions (BO, CN) with simple atomic anions (H, F) or with one another. Such “anti-electrostatic” anion–anion attractions are shown to lead to robust metastable binding wells (ranging up to 20–30 kcal/mol at DFT level, or still deeper at dynamically correlated MP2 level) that are shielded by broad predissociation barriers (ranging up to 1.5 Å width) from long-range ionic dissociation. Like-charge attraction at pi-centers thereby provides additional evidence for the dominance of 3-center/4-electron (3c/4e) nD-π*AX interactions that are fully analogous to the nD-σ*AH interactions of H-bonding. Using standard keyword options of natural bond orbital (NBO) analysis, we demonstrate that both n-σ* (sigma hole) and n-π* (pi hole) interactions represent simple variants of the essential resonance-type donor-acceptor (Bürgi–Dunitz-type) attraction that apparently underlies all intermolecular association phenomena of chemical interest. We further demonstrate that “deletion” of such π*-based donor-acceptor interaction obliterates the characteristic Bürgi–Dunitz signatures of pi-hole interactions, thereby establishing the unique cause/effect relationship to short-range covalency (“charge transfer”) rather than envisioned Coulombic properties of unperturbed monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号