首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
对高性能超级电容器不断增长的需求促进了无粘合剂电极材料的快速发展。静电纺纳米纤维由于具有良好的柔性、大比表面积、高孔隙率、容易制备等优点引起了研究者们的强烈关注。本文综述了静电纺纳米纤维基无粘合剂电极材料在超级电容器领域的研究进展,阐述了不同材料的设计制备过程和提升电化学性能的诸多方法,并指明了静电纺纳米纤维基超级电容器无粘合剂电极材料的发展机遇与挑战,为性能优异的无粘合剂超级电容器电极材料的进一步开发与应用拓宽了思路。  相似文献   

2.
采用一步法静电纺丝技术制备了具有超亲水特性的氧化锰/碳纳米纤维(MnO_x/CNFs)复合柔性膜电极材料,并通过X射线衍射、扫描电子显微镜和透射电子显微镜等对复合材料进行了表征.电化学性能测试结果表明,复合材料的电容性能优于单一材料,醋酸锰质量分数为40%时制得的复合纳米纤维电极(MC-4)在1 A/g电流密度下,于2 mol/L KOH电解液中的比电容高达1112.5 F/g,10 A/g电流密度下循环3000次比容量保持在93.4%,具有很好的稳定性.MnO_x/CNFs复合材料电化学性能增强一方面是由于三维超亲水纤维膜结构有利于电解液的快速浸润渗透,从而极大缩短了传输到材料基质的有效路径;另一方面是由于碳和MnO_x的协同效应,包裹在MnO_x粒子周围的碳层避免了MnO_x在充放电过程中的体积膨胀效应,这2种叠加机制促进了电化学性能的提升.  相似文献   

3.
Graphene‐based hydrogels can be used as supercapacitor electrodes because of their excellent conductivity, their large surface area and their high compatibility with electrolytes. Nevertheless, the large aspect ratio of graphene sheets limits the kinetics of processes occurring in the electrode of supercapacitors. In this study, we have introduced in‐plane and out‐of‐plane pores into a graphene–nickel hydroxide (Ni(OH)2) hybrid hydrogel, which facilitates charge and ion transport in the electrode. Due to its optimised chemistry and architecture, the hybrid electrode demonstrates excellent electrochemical properties with a combination of high charge storage capacitance, fast rate capability and stable cycling performance. Remarkably, the Ni(OH)2 in the hybrid contributes a capacitance as high as 3138.5 F g?1, which is comparable to its theoretical capacitance, suggesting that such structure facilitates effectively charge‐transfer reactions in electrodes. This work provides a facile pathway for tailoring the porosity of graphene‐based materials for improved performances. Moreover, this work has also furthered our understanding in the effect of pore and hydrogel structures on the electrochemical properties of materials.  相似文献   

4.
Nickel oxide/carbon nanotubes (NiO/CNTs) composite materials for supercapacitor are prepared by chemically depositing nickel hydroxide onto carbon nanotubes pretreated by ultrasonication and followed by thermal annealing at 300 °C. A series of NiO/CNTs composites with different weight ratios of nickel oxide versus carbon nanotubes are synthesized via the same route. The high-resolution TEM and SEM results show that a lot of nicks, which favored the nucleation of the nickel hydroxide formed on the outer walls of carbon nanotubes due to ultrasonic cavitations, and then nickel oxide coated uniformly on the outer surface of the individual carbon nanotubes. The NiO/CNTs electrode presents a maximum specific capacitance of 523 F/g as well as a good cycle life during 1,000 cycles in 6 M KOH electrolyte. The good electrochemical characteristics of NiO/CNTs composite can be attributed to the three-dimensionally interconnected nanotubular structure with a thin film of electroactive materials.  相似文献   

5.
以泡沫镍(NF)为集流体,在优化好的电位、时间和浓度下,将还原氧化石墨烯(rGO)、金属氧化物(Co_3O_4和NiO)直接生长在泡沫镍上,制备了NF/rGO/Co_3O_4和NF/rGO/Co_3O_4/NiO电极.运用三电极体系对电极材料进行了恒流充放电(GCD)和交流阻抗(EIS)等测试.结果表明,复合材料NF/rGO/Co_3O_4/NiO具有较高的比容量(电流密度为2 A/g时,比容量达到1188.6 F/g)和较好的循环稳定性(2000周充放电后,稳定性达到80.5%).该材料还具有较高的倍率性能,当电流密度由2 A/g增至12 A/g时,倍率性能仍能达到75.7%.  相似文献   

6.
镍前驱体对非负载型镍催化剂上甲烷分解活性的影响   总被引:1,自引:0,他引:1  
张微  葛庆杰  徐恒泳 《催化学报》2010,31(11):1358-1362
 分别以硝酸镍和乙酸镍为前驱体, 采用沉淀法制备了非负载型 Ni 催化剂, 运用 X 射线衍射、H2-程序升温还原及 CH4 程序升温表面反应对催化剂进行了表征, 并考察了 Ni 催化剂上 CH4 分解反应活性. 结果表明, 以乙酸镍为前驱体制得的 NiO 样品粒子尺寸较小, 较易被还原, 还原后得到的催化剂催化 CH4 分解活性和稳定性较高; 而以硝酸镍为前驱体制得的 NiO 样品粒子尺寸较大, 较难被还原, 还原后催化剂上 CH4 分解活性和稳定性较低. 制备过程中乙酸镍与溶剂乙二醇所形成的配合物是获得尺寸较小 NiO 样品的关键.  相似文献   

7.
The development of lightweight, flexible, and stretchable energy storage systems is essential for state-of-the-art electronic devices.We propose a new and broad strategy to fabricate a stretchable and conductive GO/CNTs-TPU fiber electrode by direct wet spinning, from which a flexible fibrous supercapacitor is fabricated. The fibrous electrode exhibits a high strength of 11.68 MPa, high conductivity of 342 S/cm, and high specific capacitances(21.8 mF/cm, 36.45 F/cm~3, and 95 F/g). The specific capacitance of the assembled all-solid-state hybrid fiber-shaped supercapacitor reaches 14.3 F/cm~3. After 5000 charge-discharge cycles, 97% of the capacitance of the hybrid supercapacitor is maintained. These high-strength electrochemical electrode materials could be potential candidates for applications in practical and large-scale energy storage systems and textile clothes.  相似文献   

8.
Fibers made from CNTs (CNT fibers) have the potential to form high-strength, lightweight materials with superior electrical conductivity. CNT fibers have attracted great attention in relation to various applications, in particular as conductive electrodes in energy applications, such as capacitors, lithium-ion batteries, and solar cells. Among these, wire-shaped supercapacitors demonstrate various advantages for use in lightweight and wearable electronics. However, making electrodes with uniform structures and desirable electrochemical performances still remains a challenge. In this study, dry-spun CNT fibers from CNT carpets were homogeneously loaded with MnO2 nanoflakes through the treatment of KMnO4. These functionalized fibers were systematically characterized in terms of their morphology, surface and mechanical properties, and electrochemical performance. The resulting MnO2–CNT fiber electrode showed high specific capacitance (231.3 F/g) in a Na2SO4 electrolyte, 23 times higher than the specific capacitance of the bare CNT fibers. The symmetric wire-shaped supercapacitor composed of CNT–MnO2 fiber electrodes and a PVA/H3PO4 electrolyte possesses an energy density of 86 nWh/cm and good cycling performance. Combined with its light weight and high flexibility, this CNT-based wire-shaped supercapacitor shows promise for applications in flexible and wearable energy storage devices.  相似文献   

9.
《中国化学快报》2020,31(4):1004-1008
MXene-based electrode materials exhibit favorable supercapacitor performance in sulfuric acid due to praised pseudocapacitance charge storage mechanism.However,self-stacking of conventional MXene electrodes severely restricts their electrochemical performance,especially at high loading.Herein,a flexible cross-linked porous Ti_3C_2T_x-MXene-reduced graphene oxide(Ti_3C_2T_x-RGO) film is skillfully designed and synthesized by microscopic explosion of graphene oxide(GO) at sudden high te mperature.The generated chamber structure between layers could hold a few of electrolyte,leading to a close-fitting reaction at interlayer and avoiding complex ions transmission paths.The Ti_3C_2T_x-RGO film displayed a preferable rate performance than that of pure Ti_3C_2T_x film and a high capacitance of 505 F/g at 2 mV/s.Furthermore,the uniform intralayer structure and unique energy storage process lead to thicknessindependenct electrochemical performances.This work provides a simple and feasible improvement approach for the design of MXene-based electrodes,which can be spread other electrochemical systems limited by ions transport,such as metal ions batteries and catalysis.  相似文献   

10.
Scalable, highly stable supercapacitor electrodes were developed from the mixture of a tea factory waste based activated carbon (AC) and a low-cost electrochemical exfoliated graphene (EEG). The hybrid electrodes showed notably enhanced stability at high current densities. The AC sample was prepared by chemical method and exposed to a further heat treatment to enhance electrochemical performance. Graphene used in the preparation of hybrid electrodes was obtained by direct electrochemical exfoliation of graphite in an aqueous solution. Detailed structural characterization of AC, EEG, and hybrid material was performed. The original electrochemical performances of AC and EEG were examined in button size cells using an aqueous electrolyte. The hybrid materials were prepared by mixing AC and EEG at different mass percentage ratios, and tested as supercapacitor electrodes under the same conditions. Capacitance stability of the electrodes developed from AC:EEG (70:30) at high currents increased by about 45% compared to the original AC. The highest gravimetric capacitance (110 F/g) was achieved by this hybrid electrode. The hybrid electrode was scaled up to the pouch size and tested using an organic electrolyte. The organic electrolyte was preferred for scaling up due to its wider voltage ranges. The pouch cell had a gravimetric capacitance of 85 F/g and exhibited as good performance as the coin cell in the organic electrolyte.  相似文献   

11.
以甲烷、乙烯、乙醇和正丁醇为碳源,通过催化化学气相沉积在具有三维开放网络结构的烧结8μm-Ni金属纤维上沉积碳的方法,制备了以金属Ni纤维网络为集流极、沉积碳为离子存储库的薄层大面积自支撑C/Ni-fiber复合电极材料.用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、热重分析(TGA)、X射线衍射(XRD)、N2-吸脱附等温线和循环伏安与电化学阻抗谱对电极材料进行了表征,并考察了其作为电极的电容脱盐性能.乙烯、甲烷、正丁醇和乙醇为碳源的沉积碳形态分别为鱼骨状碳纳米管(CNTs)、石墨烯面取向与轴平行的CNTs、棒状和蠕虫状碳纳米纤维(CNFs).C/Ni-fiber复合电极材料对NaCl的电吸附容量顺序为:乙烯>正丁醇>甲烷>乙醇,这与复合电极的电化学特性、孔结构和碳的纳米结构相关.在1.2 V的工作电压下,以乙烯为碳源制备的C/Ni-fiber复合电极材料对水溶液中NaCl(100 mg·L-1)的电吸附容量达159μmol·g-1.  相似文献   

12.
This review provides an overview of recent progress towards the development of flexible supercapacitors based on macroscopic carbon nanotubes-based electrodes, including one-dimensional (1D) fibers, 2D films, and 3D foams, with a focus on electrode preparation and configuration design as well as their integration with other multifunctional devices.  相似文献   

13.
《中国化学快报》2023,34(4):107402
Antimony-based materials are considered as promising anodes for potassium ion batteries due to their high theoretical capacity and low electrode potential. However, the aggregation and bulk expansion of Sb particles in cycling will cause capacity attenuation and poor rate performance. In this paper, Sb nanoplates were designed to be embedded in flexible porous N-dopped carbon nanofibers (Sb@PCNFs) by a simple electrospinning deposition (ESD) method. In this structural design, Sb nanoplates of high capacity were employed as active materials, N-dopped carbon nanofibers were used to improve conductivity and structural stability. The introduction of pore-forming agent enables the nanofibers to possess porous structure, thus buffering the huge volume change and promoting the transfer of electrolyte/ions. More importantly, the freestanding film can be directly used as a working electrode, reducing the redundancy in the battery and the cost. Benefitting from the favorable structure, the freestanding flexible Sb@PCNFs electrode shows excellent potassium storage performance with a capacity of 314 mAh/g after 2000 cycles at 500 mA/g. This strategy of employing active material with high capacity in porous and conductive flexible nanofibers represents an effective method of achieving binder-free electrode with good electrochemical performance towards wearable energy storage devices.  相似文献   

14.
以超级电容器的电极材料制备、性质研究及对组装的非对称超级电容器的性能研究为核心内容,提高超级电容器电化学性能为主要目的,采用水热合成法在碳布基底上合成三氧化钨/碳布和活化后的碳布为超级电容器的电极材料。采用SEM、XRD表征方法对制备的材料进行了形貌表征及物相分析;使用上海辰华电化学工作站对电极材料进行了循环伏安、恒流充放电、交流阻抗等电化学性能测试. 最终得到以三氧化钨/碳布为正极材料、活化后的碳布为负极材料组装成不对称柔性电容器,进行电化学测试,其电位窗口提高到0~1.6 V,电流密度61.9 mA·cm-2时,电容达到58.96 F·cm-2,功率密度0.48 W·cm-2时,能量密度为20.36 mWh·cm-2,同时在电流密度8 mA·cm-2时,循环3000次时表现出良好的循环性能,相较于对称型超级电容器,倍率性能更加优异.  相似文献   

15.
研究了碳纳米管(CNTs)氮气热处理后结构的变化, 以及热处理温度对CNTs-LaNi5电极电化学性能的影响. CNTs热处理后, 管壁变薄, 层数变少, 管的外径减小, 更有利于氢气的吸附和脱附. 将碳纳米管与LaNi5储氢合金按质量比1:10混合, 制作成CNTs-LaNi5电极. 800 ℃时CNTs-LaNi5电极的储氢性能最好, 最大容量为519.1 mAh•g-1, 相应的平台电压高达1.19 V. 在500~600 ℃范围内, 随着温度升高, 放电容量有较大幅度的增加; 在600~800 ℃范围内, 随着温度升高, 放电容量有较小幅度的增加; 但到900 ℃时, 放电容量反而下降. 由此可见, CNTs的热处理温度对CNTs-LaNi5电极的电化学储氢性能有着较大的影响. 纯LaNi5电极的放电容量仅为265.6 mAh•g-1, 平台电压仅为0.83 V. 添加了碳纳米管的CNTs-LaNi5电极的电化学活性高于纯LaNi5电极.  相似文献   

16.
We briefly summarize the fundamental mechanism of supercapacitors and classify them into three kinds according to the different energy storage mechanism. We further discuss the energy storage mechanism of nickel/cobalt based materials, and we suggest that these kinds of battery-type materials should be classified into hybrid supercapacitor instead of pseudocapacitors.  相似文献   

17.
Due to ever-increasing global energy demands and dwindling resources, there is a growing need to develop materials that can fulfil the World's pressing energy requirements. Electrochemical energy storage devices have gained significant interest due to their exceptional storage properties, where the electrode material is a crucial determinant of device performance. Hence, it is essential to develop 3-D hierarchical materials at low cost with precisely controlled porosity and composition to achieve high energy storage capabilities. After presenting the brief updates on porous carbons (PCs), then this review will focus on the nitrogen (N) doped porous carbon materials (NPC) for electrochemical supercapacitors as the NPCs play a vital role in supercapacitor applications in the field of energy storage. Therefore, this review highlights recent advances in NPCs, including developments in the synthesis of NPCs that have created new methods for controlling their morphology, composition, and pore structure, which can significantly enhance their electrochemical performance. The investigated N-doped materials a wide range of specific surface areas, ranging from 181.5 to 3709 m2 g−1, signifies a substantial increase in the available electrochemically active surface area, which is crucial for efficient energy storage. Moreover, these materials display notable specific capacitance values, ranging from 58.7 to 754.4 F g−1, highlighting their remarkable capability to effectively store electrical energy. The outstanding electrochemical performance of these materials is attributed to the synergy between heteroatoms, particularly N, and the carbon framework in N-doped porous carbons. This synergy brings about several beneficial effects including, enhanced pseudo-capacitance, improved electrical conductivity, and increased electrochemically active surface area. As a result, these materials emerge as promising candidates for high-performance supercapacitor electrodes. The challenges and outlook in NPCs for supercapacitor applications are also presented. Overall, this review will provide valuable insights for researchers in electrochemical energy storage and offers a basis for fabricating highly effective and feasible supercapacitor electrodes.  相似文献   

18.
In this work, porous NiO microspheres interconnected by carbon nanotubes (NiO/CNTs) were successfully fabricated by the pyrolysis of nickel metal-organic framework precursors with CNTs and evaluated as anode materials for lithium-ion batteries (LIBs). The structures, morphologies, and electrochemical performances of the samples were characterized by X-ray diffraction, N2 adsorption-desorption, field emission scanning electron microscopy, cyclic voltammetry, galvanostatic charge/discharge tests, and electrochemical impedance spectroscopy, respectively. The results show that the introduction of CNTs can improve the lithium-ion storage performance of NiO/CNT composites. Especially, NiO/CNTs-10 exhibits the highest reversible capacity of 812 mAh g?1 at 100 mA g?1 after 100 cycles. Even cycled at 2 A g?1, it still maintains a stable capacity of 502 mAh g?1 after 300 cycles. The excellent electrochemical performance of NiO/CNT composites should be attributed to the formation of 3D conductive network structure with porous NiO microspheres linked by CNTs, which benefits the electron transfer ability and the buffering of the volume expansion during the cycling process.  相似文献   

19.
Supercapacitors, also called as ultracapacitors, are electrochemical energy-storage devices that exploit the electrostatic interaction between high-surface-area nanoporous electrodes and electrolyte ions, combining properties of conventional batteries and conventional capacitors. A symmetrical activated carbon (AC) electrode supercapacitor has been fabricated in a simple and inexpensive manner. The AC has been synthesized from Charcoal, has activated in a furnace at high temperatures. The electrode was fabricated by casting slurry made of AC and blended in a polymer solution on the counter electrode (current collector), appeared to have high mechanical strength. The electrochemical performance of the prepared samples was tested in 1 M KCl solution by cyclic voltammetry (CV), galvanostatic charge discharge technique, and impedance spectroscopy. The surface and cross-section of electrode was observed with SEM. Capacitance of fabricated supercapacitor has a favorable capacitance in the range of 65–70 F/g with low resistance. The AC electrode supercapacitor has excellent electro chemical reversibility, good cycle stability with a low fading rate of specific capacitance even after 500 cycles, which is promising for energy storage applications.  相似文献   

20.
The high specific capacitance along with good cycling stability are crucial for practical applications of supercapacitors,which always demands high-performance and stable electrode materials.In this work,we report a series of ternary composites of CoO-ZnO with different fractions of reduced graphene oxide(rGO) synthesized by in-situ growth on nickel foam,named as CZG-1,2 and 3,respectively.This sort of binder-free electrodes presents excellent electrochemical properties as well as large capacitance due to their low electrical resistance and high oxygen vacancies.Particularly,the sample of CZG-2(CoO-ZnO/rGO 20 mg) in a nanoreticular structure shows the best electrochemical performance with a maximum specific capacitance of 1951.8 F/g(216.9 mAh/g) at a current intensity of 1 A/g.The CZG-2-based hybrid supercapacitor delivers a high energy density up to 45.9 Wh/kg at a high power density of 800 W/kg,and kept the capacitance retention of 90.1% over 5000 charge-discharge cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号