首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we consider the finite element methods (FEM) for Grwünwald–Letnikov time-fractional diffusion equation, which is obtained from the standard two-dimensional diffusion equation by replacing the first-order time derivative with a fractional derivative (of order α, with 0?h r+1?+?τ2-α), where h, τ and r are the space step size, time step size and polynomial degree, respectively. A numerical example is presented to verify the order of convergence.  相似文献   

2.
In this paper, a compact finite difference method is proposed for the solution of time fractional advection-dispersion equation which appears extensively in fluid dynamics. In this approach the time fractional derivative of mentioned equation is approximated by a scheme of order O(τ 2???α ), 0?<?α?<?1, and spatial derivatives are replaced with a fourth order compact finite difference scheme. We will prove the unconditional stability and solvability of proposed scheme. Also we show that the method is convergence with convergence order O(τ 2???α ?+?h 4). Numerical examples confirm the theoretical results and high accuracy of proposed scheme.  相似文献   

3.
The cable equation is one of the most fundamental equations for modeling neuronal dynamics. These equations can be derived from the Nernst-Planck equation for electro-diffusion in smooth homogeneous cylinders. Fractional cable equations are introduced to model electrotonic properties of spiny neuronal dendrites. In this paper, a Galerkin finite element method(GFEM) is presented for the numerical simulation of the fractional cable equation(FCE) involving two integro-differential operators. The proposed method is based on a semi-discrete finite difference approximation in time and Galerkin finite element method in space. We prove that the numerical solution converges to the exact solution with order O(τ+hl+1) for the lth-order finite element method. Further, a novel Galerkin finite element approximation for improving the order of convergence is also proposed. Finally, some numerical results are given to demonstrate the theoretical analysis. The results show that the numerical solution obtained by the improved Galerkin finite element approximation converges to the exact solution with order O(τ2+hl+1).  相似文献   

4.
In this paper, we consider two types of space-time fractional diffusion equations(STFDE) on a finite domain. The equation can be obtained from the standard diffusion equation by replacing the second order space derivative by a Riemann-Liouville fractional derivative of order β (1 < β ≤ 2), and the first order time derivative by a Caputo fractional derivative of order γ (0 < γ ≤ 1). For the 0 < γ < 1 case, we present two schemes to approximate the time derivative and finite element methods for the space derivative, the optimal convergence rate can be reached O(τ2?γ + h2) and O(τ2 + h2), respectively, in which τ is the time step size and h is the space step size. And for the case γ = 1, we use the Crank-Nicolson scheme to approximate the time derivative and obtain the optimal convergence rate O(τ2 + h2) as well. Some numerical examples are given and the numerical results are in good agreement with the theoretical analysis.  相似文献   

5.
A numerical method based on exponential spline and finite difference approximations is developed to solve the generalized Burgers'-Fisher equation. The error analysis, stability and convergence properties of the method are studied via energy method. The method is shown to be unconditionally stable and accurate of orders 𝒪(k?+?kh?+?h 2) and 𝒪(k?+?kh?+?h 4). Some test problems are given to demonstrate the applicability of the purposed method numerically. Numerical results verify the theoretical behaviour of convergence properties. The main superiority of the presented scheme is its simplicity and applicability in comparison with the existing well-known methods.  相似文献   

6.
A fully discrete local discontinuous Galerkin (LDG) method coupled with 3 total variation diminishing Runge‐Kutta time‐marching schemes, for solving a nonlinear carburizing model, will be analyzed and implemented in this paper. On the basis of a suitable numerical flux setting in the LDG method, we obtain the optimal error estimate for the Runge‐Kutta–LDG schemes by energy analysis, under the condition τλh2, where h and τ are mesh size and time step, respectively, λ is a positive constant independent of h. Numerical experiments are presented to verify the accuracy and capability of the proposed schemes. For the carburizing diffusion processes of steel and the diffusion simulation for Cu‐Ni system, the numerical results show good agreement with the experimental results.  相似文献   

7.
A high order finite difference-spectral method is derived for solving space fractional diffusion equations,by combining the second order finite difference method in time and the spectral Galerkin method in space.The stability and error estimates of the temporal semidiscrete scheme are rigorously discussed,and the convergence order of the proposed method is proved to be O(τ2+Nα-m)in L2-norm,whereτ,N,αand m are the time step size,polynomial degree,fractional derivative index and regularity of the exact solution,respectively.Numerical experiments are carried out to demonstrate the theoretical analysis.  相似文献   

8.
The telegraph equation is one of the important models in many physics and engineering. In this work, we discuss the high-order compact finite difference method for solving the two-dimensional second-order linear hyperbolic equation. By using a combined compact finite difference method for the spatial discretization, a high-order alternating direction implicit method (ADI) is proposed. The method is O(τ2 + h6) accurate, where τ, h are the temporal step size and spatial size, respectively. Von Neumann linear stability analysis shows that the method is unconditionally stable. Finally, numerical examples are used to illustrate the high accuracy of the new difference scheme.  相似文献   

9.
A linearized three‐step backward differential formula (BDF) Galerkin finite element method (FEM) is developed for nonlinear Sobolev equation with bilinear element. Temporal error and spatial error are discussed through introducing a time‐discrete system. Solutions of the time‐discrete system are bounded in H2‐norm by the temporal error. Superconvergence results of order O(h2 + τ3) in H1‐norm for the original variable are deduced based on the spatial error. Some new tricks are utilized to get higher order of the temporal error and the spatial error. At last, two numerical examples are provided to support the theoretical analysis. Here, h is the subdivision parameter, and τ is the time step.  相似文献   

10.
Recently Caputo and Fabrizio introduced a new derivative with fractional order without singular kernel. The derivative can be used to describe the material heterogeneities and the fluctuations of different scales. In this article, we derived a new discretization of Caputo–Fabrizio derivative of order α (1 < α < 2) and applied it into the Cattaneo equation. A fully discrete scheme based on finite difference method in time and Legendre spectral approximation in space is proposed. The stability and convergence of the fully discrete scheme are rigorously established. The convergence rate of the fully discrete scheme in H1 norm is O(τ2 + N1?m), where τ, N and m are the time‐step size, polynomial degree and regularity in the space variable of the exact solution, respectively. Furthermore, the accuracy and applicability of the scheme are confirmed by numerical examples to support the theoretical results.  相似文献   

11.
Due to the difficulty in obtaining the a priori estimate,it is very hard to establish the optimal point-wise error bound of a finite difference scheme for solving a nonlinear partial differential equation in high dimensions(2D or 3D).We here propose and analyze finite difference methods for solving the coupled GrossPitaevskii equations in two dimensions,which models the two-component Bose-Einstein condensates with an internal atomic Josephson junction.The methods which we considered include two conservative type schemes and two non-conservative type schemes.Discrete conservation laws and solvability of the schemes are analyzed.For the four proposed finite difference methods,we establish the optimal convergence rates for the error at the order of O(h~2+τ~2)in the l~∞-norm(i.e.,the point-wise error estimates)with the time stepτand the mesh size h.Besides the standard techniques of the energy method,the key techniques in the analysis is to use the cut-off function technique,transformation between the time and space direction and the method of order reduction.All the methods and results here are also valid and can be easily extended to the three-dimensional case.Finally,numerical results are reported to confirm our theoretical error estimates for the numerical methods.  相似文献   

12.
The convergence of finite element methods for linear elliptic boundary value problems of second and forth order is well understood. In this article, we introduce finite element approximations of some linear semi-elliptic boundary value problem of mixed order on a two-dimensional rectangular domain Q. The equation is of second order in one direction and forth order in the other and appears in the optimal control of parabolic partial differential equations if one eliminates the control and the state (or the adjoint state) in the first order optimality conditions. We establish a regularity result and estimate for the finite element error of conforming approximations of this equation. The finite elements in use have a tensor product structure, in one dimension we use linear, quadratic or cubic Lagrange elements in the other dimension cubic Hermite elements. For these elements, we prove the error bound O(h 2 + τ k ) in the energy norm and O((h 2 + τ k )(h 2 + τ)) in the L 2(Q)-norm.  相似文献   

13.
We study the rate of convergence of some explicit and implicit numerical schemes for the solution of a parabolic stochastic partial differential equation driven by white noise. These include the forward and backward Euler and the Crank–Nicholson schemes. We use the finite element method. We find, as expected, that the rates of convergence are substantially similar to those found for finite difference schemes, at least when the size of the time step k is on the order of the square of the size of the space step h: all the schemes considered converge at a rate on the order of h1/2+k1/4, which is known to be optimal. We also consider cases where k is much greater than h2, and find that only the backward Euler method always attains the optimal rate; other schemes, even though they are stable, can fail to convergence to the true solution if the time step is too long relative to the space step. The Crank–Nicholson scheme behaves particularly badly in this case, even though it is a higher-order method. Mathematics Subject Classifications (2000) 60H15, 60H35, 65N30, 35R60.  相似文献   

14.
In this article, a local discontinuous Galerkin (LDG) method is studied for numerically solving the fractal mobile/immobile transport equation with a new time Caputo–Fabrizio fractional derivative. The stability of the LDG scheme is proven, and a priori error estimates with the second‐order temporal convergence rate and the (k + 1) th order spatial convergence rate are derived in detail. Finally, numerical experiments based on Pk, k = 0, 1, 2, 3, elements are provided to verify our theoretical results.  相似文献   

15.
The two-grid method is studied for solving a two-dimensional second-order nonlinear hyperbolic equation using finite volume element method. The method is based on two different finite element spaces defined on one coarse grid with grid size H and one fine grid with grid size h, respectively. The nonsymmetric and nonlinear iterations are only executed on the coarse grid and the fine grid solution can be obtained in a single symmetric and linear step. It is proved that the coarse grid can be much coarser than the fine grid. A prior error estimate in the H1-norm is proved to be O(h+H3|lnH|) for the two-grid semidiscrete finite volume element method. With these proposed techniques, solving such a large class of second-order nonlinear hyperbolic equations will not be much more difficult than solving one single linearized equation. Finally, a numerical example is presented to validate the usefulness and efficiency of the method.  相似文献   

16.
Nonconforming finite element method is studied for a linearized backward fully-discrete scheme of the Ginzburg–Landau equation with the quadrilateral element. The unconditional convergent result of order O(h + τ) in the broken H1-norm is deduced rigorously based on a splitting technique, by which the ratio between the subdivision parameter h and the time step τ is removed. Furthermore, numerical results are provided to confirm the theoretical analysis. The analysis developed herein can be regarded as a framework to deal with the unconditional convergent analysis of the Ginzburg–Landau equation for other known low order nonconforming elements.  相似文献   

17.
In this article, unconditional superconvergent analysis of a linearized fully discrete mixed finite element method is presented for a class of Ginzburg–Landau equation based on the bilinear element and zero‐order Nédélec's element pair (Q11/Q01 × Q10). First, a time‐discrete system is introduced to split the error into temporal error and spatial error, and the corresponding error estimates are deduced rigorously. Second, the unconditional superclose and optimal estimate of order O(h2 + τ) for u in H1‐norm and p = ?u in L2‐norm are derived respectively without the restrictions on the ratio between h and τ, where h is the subdivision parameter and τ, the time step. Third, the global superconvergent results are obtained by interpolated postprocessing technique. Finally, some numerical results are carried out to confirm the theoretical analysis.  相似文献   

18.
In this paper, a linear three-level average implicit finite difference scheme for the numerical solution of the initial-boundary value problem of Generalized Rosenau-Burgers equation is presented. Existence and uniqueness of numerical solutions are discussed. It is proved that the finite difference scheme is convergent in the order of O(τ2 + h2) and stable. Numerical simulations show that the method is efficient.  相似文献   

19.
In this paper, we consider a time fractional diffusion equation on a finite domain. The equation is obtained from the standard diffusion equation by replacing the first-order time derivative by a fractional derivative (of order 0 < α < 1 ). We propose a computationally effective implicit difference approximation to solve the time fractional diffusion equation. Stability and convergence of the method are discussed. We prove that the implicit difference approximation (IDA) is unconditionally stable, and the IDA is convergent withO(Τ +h 2), where Τ andh are time and space steps, respectively. Some numerical examples are presented to show the application of the present technique.  相似文献   

20.
In the article, two linearized finite difference schemes are proposed and analyzed for the Benjamin–Bona–Mahony–Burgers (BBMB) equation. For the construction of the two-level scheme, the nonlinear term is linearized via averaging k and k + 1 floor, we prove unique solvability and convergence of numerical solutions in detail with the convergence order O(τ2 + h2) . For the three-level linearized scheme, the extrapolation technique is utilized to linearize the nonlinear term based on ψ function. We obtain the conservation, boundedness, unique solvability and convergence of numerical solutions with the convergence order O(τ2 + h2) at length. Furthermore, extending our work to the BBMB equation with the nonlinear source term is considered and a Newton linearized method is inserted to deal with it. The applicability and accuracy of both schemes are demonstrated by numerical experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号