首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrafast transient absorption spectroscopy is performed on a novel donor-acceptor-donor triad made of two identical bisthiophene derivatives as electron donors and a central perylenediimide moiety as electron acceptor. The triad is extended at both ends by covalently bound siloxane chains that confer self-organisation into thin smectic films at ambient temperature. When diluted in chloroform, selective excitation of the donor moiety leads to resonance energy transfer within 130 fs to the acceptor moiety, followed by the formation of a charge transfer (CT) state in ~3 ps. The CT state recombines entirely on a 55 ps time scale. In the liquid crystal films, excitonic intermolecular coupling leads to significant changes in the dynamics. Most remarkably, ultrafast intra- and intermolecular CT state formation occurs in about 60 fs, i.e. on a time scale comparable to electronic coherence times. While the intra-molecular CT states recombine on the same time scale as in solution or even faster, inter-molecular CT states live for about 1 ns. Last, triplet states of the perylenediimide moiety dominate the differential absorption after ~1 ns. We anticipate that the fast recombination of intra-molecular CT states and the triplet state formation may severely limit the photo-current in these materials.  相似文献   

2.
Photoinduced and transient absorption spectroscopy is used to study triplet exciton dynamics in thin films of a new thiophene-based oligomer (DCV3T) and blends of DCV3T and fullerene C60. We find enhanced DCV3T triplet exciton generation in the blend layer, which is explained as an excitonic ping-pong effect: singlet energy transfer from DCV3T to C60, followed by immediate intersystem crossing to C60, and triplet exciton back-transfer. Estimations of the rate constants involved show that the ping-pong effect has an overall efficiency close to unity. The singlet-singlet energy transfer from DCV3T to C60 is demonstrated by efficient quenching of DCV3T luminescence in the blend, leading to sensitized emission of C60. We discuss a promising new concept of solar cells with an enlarged active-layer thickness based on potentially long-ranged triplet exciton diffusion in combination with efficient intersystem crossing.  相似文献   

3.
We studied the generation and decay dynamics of triplet excitons in tris-(8-hydroxyquinoline) aluminum (Alq3) thin films by using transient absorption spectroscopy. Absorption spectra of both singlet and triplet excitons in the film were identified by comparison with transient absorption spectra of the ligand molecule (8-hydroxyquinoline) itself and the excited triplet state in solution previously reported. By measuring the excitation light intensity dependence of the absorption, we found that exciton annihilation dominated under high-density excitation conditions. Annihilation rate constants were estimated to be gammaSS = (6 +/- 3) x 10(-11) cm3 s(-1) for single excitons and gammaTT = (4 +/- 2) x 10(-13) cm3 s(-1) for triplet excitons. From detailed analysis of the light intensity dependence of the quantum yield of triplet excitons under high-density conditions, triplet excitons were mainly generated through fission from highly excited singlet states populated by singlet-singlet exciton annihilation. We estimated that 30% of the highly excited states underwent fission.  相似文献   

4.
The dynamics of negative polaron and triplet exciton transport within a series of monodisperse platinum (Pt) acetylide oligomers is reported. The oligomers consist of Pt-acetylide repeats, [PtL(2)-C≡C-Ph-C≡C-](n) (where L = PBu(3) and Ph = 1,4-phenylene, n = 2, 3, 6, and 10), capped with naphthalene diimide (NDI) end groups. The Pt-acetylide segments are electro- and photoactive, and they serve as conduits for transport of electrons (negative polaron) and triplet excitons. The NDI end groups are relatively strong acceptors, serving as traps for the carriers. Negative polaron transport is studied by using pulse radiolysis/transient absorption at the Brookhaven National Laboratory Laser-Electron Accelerator Facility (LEAF). Electrons are rapidly attached to the oligomers, with some fraction initially residing upon the Pt-acetylide chains. The dynamics of transport are resolved by monitoring the spectral changes associated with transfer of electrons from the chain to the NDI end group. Triplet exciton transport is studied by femtosecond-picosecond transient absorption spectroscopy. Near-UV excitation leads to rapid production of triplet excitons localized on the Pt-acetylide chains. The excitons transport to the chain ends, where they are annihilated by charge separation with the NDI end group. The dynamics of triplet transport are resolved by transient absorption spectroscopy, taking advantage of the changes in spectra associated with decay of the triplet exciton and rise of the charge-separated state. The results indicate that negative polarons and excitons are transported rapidly, on average moving distances of ~3 nm in less than 200 ps. Analysis of the dynamics suggests diffusive transport by a site-to-site hopping mechanism with hopping times of ~27 ps for triplets and <10 ps for electrons.  相似文献   

5.
We report detailed studies of optoelectronic and charge transport properties at the organic-organic semiconductor interfaces formed between polymer chains (interchain) and within a polymer chain (intrachain). These interfaces are fabricated using poly(9,9-di-n-octylfluorene-alt-N-(4-butylphenyl)diphenylamine) (TFB [f8-tfb]) (electron-donor) and poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT [f8-bt]) (electron-acceptor) conjugated polymers, by blending them together or by covalently attaching them via a main polymer backbone (copolymer). For optoelectronic properties, when a bulky and twisted tfb molecule is incorporated into a rigid F8BT conjugated backbone, it disturbs the conjugation of F8BT polymer, leading to a blue-shift in the lowest absorption transition. However, by acting as an effective electron donor, it assists the formation of an intrachain singlet exciton that has a strong charge-transfer character, leading to a red-shifted and longer-lived emission than that of F8BT. An extremely efficient and fast energy transfer from tfb donor to bt acceptor is observed in the copolymer (<1 ps) compared to transfer from TFB to F8BT in the blend (tens of ps). This efficient energy transfer in the copolymer is found to be associated with its low fluorescence efficiency (40-45% vs 60-65% for blend) because of the migration of radiative singlet excitons to low-energy states such as triplet and exciplex states that are nonemissive or weakly emissive. The presence of molecular-scale tfb-f8-bt interfaces in the copolymer, however, does not hinder an efficient transport of charge carriers at high drive voltages. Instead, it provides a better balance of charge carriers inside the device, which leads to slower decay of the device efficiency and thus more stable light-emitting diodes with increasing voltage than the blend devices. These distinctive optoelectronic and charge transport properties observed at different organic-organic semiconductor interfaces will provide useful input for the design rules of conjugated polymers required for improved molecular electronics.  相似文献   

6.
For real‐world applications of photon upconversion based on the triplet–triplet annihilation (TTA‐UC), it is imperative to develop solid‐state TTA‐UC systems that work effectively under low excitation power comparable to solar irradiance. As an approach in this direction, aromatic crystals showing high triplet diffusivity are expected to serve as a useful platform. However, donor molecules inevitably tend to segregate from the host acceptor crystals, and this inhomogeneity results in the disappointing performance of crystalline state TTA‐UC. In this work, a series of cast‐film‐forming acceptors was developed, which provide both regular acceptor alignment and soft domains of alkyl chains that accommodate donor molecules without segregation. A typical triplet sensitizer, PtII octaethylporphyrin (PtOEP), was dispersed in these acceptor crystals without aggregation. As a result, efficient triplet energy transfer from the donor to the acceptor and diffusion of triplet excitons among regularly aligned anthracene chromophores occurred. It resulted in TTA‐UC emission at low excitation intensities, comparable to solar irradiance.  相似文献   

7.
The donor:acceptor(D:A) blend ratio plays a very important role in affecting the progress of charge transfer and energy transfer in bulk heterojunction(BHJ) orga nic solar cells(OSCs).The proper D:A blend ratio can provide maximized D/A interfacial area for exciton dissociation and appro p riate domain size of the exciton diffusion length,which is beneficial to obtain high-performance OSCs.Here,we comprehensively investigated the relationship between various D:A blend ratios and the charge transfer and energy transfer mechanisms in OSCs based on PBDB-T and non-fullerene acceptor IT-M.Based on various D:A blend ratios,it was found that the ratio of components is a key factor to suppress the formation of triplet states and recombination energy losses.Rational D:A blend ratios can provide appropriate donor/accepter surface for charge transfer which has been powerfully verified by various detailed experimental results from the time-resolved fluorescence measurement and transient absorption(TA) spectroscopy.Optimized coherence length and crystallinity are verified by grazing incident wide-angle X-ray scattering(GIWAXS) measurements.The results are bene ficial to comprehend the effects of various D:A blend ratios on charge transfer and energy transfer dynamics and provides constructive suggestions for rationally designing new materials and feedback for photovoltaic performance optimization in non-fullerene OSCs.  相似文献   

8.
The possibility to transfer energy between molecular excitons across a metal film up to 150 nm thick represents a very attractive solution to control and improve the performances of thin optoeletronic devices. This process involves the presence of coupled surface plasmon polaritons (SPPs) at the two dielectric-metal interfaces, capable of mediating the interactions between donor and acceptor, located on opposite sides of the metal film. In this Article, the photophysics and the dynamics of an efficient SPP-mediated energy transfer between a suitable dye and a conjugated polymer is characterized by means of steady-state and time-resolved photoluminescence techniques. The process is studied in model multilayer structures (donor/metal/acceptor) as well as in electrically pumped heterostructures (donor/metal cathode/acceptor/anode), to verify the effects of applied electric fields on the efficiency and the dynamics of SPP-mediated energy transfer. A striking enhancement of the overall luminescence was recorded in a particular range of applied bias, suggesting the presence of cooperative effects between optical and electrical stimulations.  相似文献   

9.
Two phenazine donor–acceptor‐conjugated copolymers (P1 and P2) with the same polymer backbone but different anchoring positions of alkoxy chain on the phenazine unit were investigated to identify the effect of changing the position of alkoxy chains on their optical, electrochemical, blend film morphology, and photovoltaic properties. Although the optical absorption and frontier orbital energy levels were insensitive to the position of alkoxy chains, the film morphologies and photovoltaic performances changed significantly. P1/PC71BM blend film showed the formation of phase separation with large coarse aggregates, whereas P2/PC71BM blend film was homogeneous and smooth. Accordingly, power conversion efficiency (PCE) of photovoltaic devices increased from 1.50% for P1 to 2.54% for P2. In addition, the PCE of the polymer solar cell based on P2/PC71BM blend film could be further improved to 3.49% by using solvent vapor annealing treatment. These results clearly revealed that tuning the side‐chain position could be an effective way to adjust the morphology of the active layer and the efficiency of the photovoltaic device. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2910–2918  相似文献   

10.
Interchain interactions can play a positive role in reaching amplified spontaneous emission in an interesting core–polymer system where the donor (side chains) and the acceptor (core) are chemically linked together. Different degree of interchain interactions modifies the photophysical characteristics of the polymer. By means of transient absorption spectroscopy we show that the stimulated emission from the core decreases passing from solid state to concentrated solution and it is almost absent in the diluted solution. The conformational rearrangements of the core–polymer chain in solution limits the efficiency of the intrachain Förster energy transfer mechanism. The free chain rotations decrease the exciton hopping along the conjugated chains, the ratio between donor and acceptor moieties in the polymer, and change the relative orientation of the transition dipoles of the donor and acceptor causing a strong decrease of energy transfer efficiency and subsequently of the gain. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 965–969  相似文献   

11.
A series of coronenetetraimide (CorTIm)‐centered cruciform pentamers containing multiporphyrin units, in which four porphyrin units are covalently linked to a CorTIm core through benzyl linkages, were designed and synthesized to investigate their structural, spectroscopic, and electrochemical properties as well as photoinduced electron‐ and energy‐transfer dynamics. These systems afforded the first synthetic case of coroneneimide derivatives covalently linked with dye molecules. The steady‐state absorption and electrochemical results indicate that a CorTIm and four porphyrin units were successfully characterized by the corresponding reference monomers. In contrast, the steady‐state fluorescence measurements demonstrated that strong fluorescence quenching relative to the corresponding monomer units was observed in these pentamers. Nanosecond laser flash photolysis measurements revealed the occurrence of intermolecular electron transfer from triplet excited state of zinc porphyrins to CorTIm. Femtosecond laser‐induced transient absorption measurements for excitation of the CorTIm unit clearly demonstrate the sequential photoinduced energy and electron transfer between CorTIm and porphyrins, that is, occurrence of the initial energy transfer from CorTIm (energy donor) to porphyrins (energy acceptor) and subsequent electron transfer from porphyrins (electron donor) to CorTIm (electron acceptor) in these pentamers, whereas only the electron‐transfer process from porphyrins to CorTIm was observed when we mainly excite porphyrin units. Finally, construction of high‐order supramolecular patterning of these pentamers was performed by utilizing self‐assembly and physical dewetting during the evaporation of solvent.  相似文献   

12.
The electronic relaxation processes of a photoexcited linear perylenediimide-perylenemonoimide (PDI-PMI) acceptor-donor dyad were studied. PDI-PMI serves as a model compound for donor-acceptor systems in photovoltaic devices and has been designed to have a high-energy PDI (-*)-PMI (+*) charge transfer (CT) state. Our study focuses on the minimal Gibbs free energy (Delta G ET) required to achieve quantitative CT and on establishing the role of charge recombination to a triplet state. We used time-resolved photoluminescence and picosecond photoinduced absorption (PIA) to investigate excited singlet (S 1) and CT states and complemented these experiments with singlet oxygen ( (1)Delta g) luminescence and PIA measurements on longer timescales to study the population of triplet excited states (T 1). In an apolar solvent like cyclohexene (CHX), photoinduced electron transfer does not occur, but in more polar solvents such as toluene (TOL) and chlorobenzene (CB), photoexcitation is followed by a fast electron transfer, populating the PDI (-*)-PMI (+*) CT state. We extract rate constants for electron transfer (ET; S 1-->CT), back electron transfer (BET; S 1<--CT), and charge recombination (CR) to lower-energy states (CT-->S 0 and CT-->T 1). Temperature-dependent measurements yield the barriers for the transfer reactions. For ET and BET, these correspond to predictions from Marcus-Jortner theory and show that efficient, near quantitative electron transfer ( k ET/ k BET >or= 100) can be obtained when Delta G ET approximately -120 meV. With respect to triplet state formation, we find a relatively low triplet quantum yield (Phi T < 25%) in CHX but much higher values (Phi T = 30-98%) in TOL and CB. We identify the PDI (-*)-PMI (+*) state as a precursor to the T 1 state. Recombination to T 1, rather than to the ground-state S 0, is required to rationalize the experimental barrier for CR. Finally, we discuss the relevance of these results for electron donor-acceptor films in photovoltaic devices.  相似文献   

13.
A convenient protocol to fabricate an organic–inorganic hybrid system with covalently bound light‐harvesting chromophores (stilbene and terphenylene–divinylene) and an electron acceptor (titanium oxide) is described. Efficient energy‐ and electron‐transfer processes may take place in these systems. Covalent bonding between the acceptor chromophores and the titania/silica matrix would be important for electron transfer, whereas fluorescence resonant energy transfer (FRET) would strongly depend on the ratio of donor to acceptor chromophores. Time‐resolved spectroscopy was employed to elucidate the detailed photophysical processes. The coupling of FRET and electron transfer was shown to work coherently to lead to photocurrent enhancement. The photocurrent responses reached a maximum when the hybrid‐material thin film contained 60 % acceptor and 40 % donor.  相似文献   

14.
Exciton diffusion in ladder-type methyl-substituted polyparaphenylene film and solution was investigated by means of femtosecond pump-probe spectroscopy using a combined approach, analyzing exciton-exciton annihilation, and transient absorption depolarization properties. We show that the different views on the exciton dynamics offered by anisotropy decay and annihilation are required in order to obtain a correct picture of the energy transfer dynamics. Comparison of the exciton diffusion coefficient and exciton diffusion radius obtained for polymer film with the two techniques reveals that there is substantial short-range order in the film. Also in isolated chains there is considerable amount of order, as revealed from only partial anisotropy decay, which shows that only a small fraction of the excitons move to differently oriented polymer segments. It is further concluded that interchain energy transfer is faster than intrachain transfer, mainly as a result of shorter interchain distances between chromophoric units.  相似文献   

15.
Pulse radiolysis technique has been employed to investigate energy and electron transfer reactions involving triplets of naphthols and hydroxybiphenyls. The transient absorption spectra obtained on pulse radiolysis of N2-saturated solution of naphthols and hydroxybiphenyls in benzene are assigned to triplet–triplet absorption. It was found that biphenyl triplets undergo energy transfer to naphthols and hydroxybiphenyls forming the acceptor triplets. On the other hand, benzophenone triplets, favor electron transfer followed by H+ transfer reaction forming benzophenone ketyl radical and phenoxyl radical of the acceptor. An analogous sequence mimics with 2-naphthol triplets and using benzophenone, acetophenone or chloranil as electron acceptor.  相似文献   

16.
We developed a sensitive spectroscopic method to probe triplet concentration in thin films of polyfluorene (PF) at room temperature. The energy of photoexcited triplet excitons is transferred to the guest metal-organic complex, meso-tetratolylporphyrin-Pd (PdTPP), and detected as phosphorescent emission. The phosphorescence intensity of PdTPP-PF blends is proportional to the independently measured triplet concentration using photoinduced absorption experiments. The high sensitivity of this method allows room temperature detection of triplet excitons in spin-coated polymer films as thin as 10 nm. We found that the triplet lifetime is independent of PdTPP concentration and therefore this method is nearly non-perturbing for the triplet population.  相似文献   

17.
Highly sensitive photoalignment of liquid crystals (LCs) can be realized by axis-selective triplet energy transfer. Addition of a triplet photosensitizer (phosphorescent donor) into a photocrosslinkable polymer tethering E-cinnamate side chains ensures dramatic enhancement of photosensitivity to generate the optical anisotropy of polymer film and surface-assisted LC photoalignment. Photoirradiation of triplet photosensitizer-doped polymer films with linearly polarized 365 nm light for the selective excitation of triplet sensitizer gives rise to optical anisotropy of cinnamates as a result of axis-selective triplet energy transfer. By analyzing phosphorescence spectra with theoretical Perrin's formula, we find that triplet energy transfer is efficient within a radius of ~0.3 nm from the triplet photosensitizer. Such photoaligned polymer films can be used for the surface-assisted orientation photocontrol of not only calamitic LC, but also discotic LC, even for extremely low exposure energies. The present procedure would be greatly advantageous for high-throughput fabrication of optical devices by photoalignment techniques.  相似文献   

18.
The photoluminescence (PL) dynamics of poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) blended in host polymer (polypropylene, PP) matrix as well as that in the neat film has been studied. The concentration of MEH-PPV in the PP blend is designed to be fairly low (0.01 wt %) in order to observe the intrinsic intrachain PL property of MEH-PPV in the solid state. The steady-state 0-0 PL band of the blend sample shows a blue-shift of 0.12 eV with respect to that of the neat film of MEH-PPV. The PL-excitation (PLE) spectra of the blend sample exhibit definite vibronic structure, and hence we can determine the magnitude of the Stokes shift as 0.06 eV. The blend sample shows a single-exponential PL decay at 4 K with a time constant of 850 ps. We emphasize that this single-exponential-type PL decay is an intrinsic property of the intrachain PL species. Time-resolved PL measurements confirm dynamical red-shift of the PL band in the neat film, whereas this trend is not found in the case of the PP blend. These observations indicate that the energy transfer between finite segments, which can cause exciton migration, is much less efficient within the isolated MEH-PPV polymer chain compared to the case of the interchain transfer. The time-resolved measurements further demonstrate that the Stokes shift identified in the blend sample takes place at the early stage within 50 ps following photoexcitation. We attribute this Stokes shift to the rapid increase of the planarity of the MEH-PPV chain caused by the torsion of some constituent phenyl rings following photoexcitation. Finally, based on an argument on the different magnitudes of Stokes shift between the blend sample and the neat film, we conclude that the PL of MEH-PPV in the neat film predominantly occurs at the site of interchain excitations via the interchain migration of excitons.  相似文献   

19.
Recent ultrafast experiments have implicated intrachain base-stacking rather than base-pairing as the crucial factor in determining the fate and transport of photoexcited species in DNA chains. An important issue that has emerged concerns whether or not a Frenkel excitons is sufficient one needs charge-transfer states to fully account for the dynamics. Here we present an SU(2)  SU(2) lattice model which incorporates both intrachain and interchain electronic interactions to study the quantum mechanical evolution of an initial excitonic state placed on either the adenosine or thymidine side of a model B DNA poly(dA).poly(dT) duplex. Our calculations indicate that over several hundred femtoseconds, the adenosine exciton remains a cohesive excitonic wave packet on the adenosine side of the chain where as the thymidine exciton rapidly decomposes into mobile electron/hole pairs along the thymidine side of the chain. In both cases, the very little transfer to the other chain is seen over the time-scale of our calculations. We attribute the difference in these dynamics to the roughly 4:1 ratio of hole versus electron mobility along the thymidine chain. We also show that this difference is robust even when structural fluctuations are introduced in the form of static off-diagonal disorder.  相似文献   

20.
We report for the first time a nanoscale resolved proof of principle of the photovoltaic activity in phase-segregated electron acceptor-donor blend architectures as obtained by Kelvin probe force microscopy. The explored length scale is truly important for organic solar cells since it is comparable to the mean exciton diffusion length. We chose a blend of regioregular poly(3-hexylthiophene) (P3HT) and N,N'-bis(1-ethylpropyl)-3,4:9,10-perylenebis(dicarboximide) (PDI) as model systems, acting as electron donor and electron acceptor, respectively. In this work, we demonstrate that the same type of molecular assemblies, obtained from a given electron-accepting material on the same sample, shows different surface potential changes upon white-light illumination when in physical contact with the donor materials or isolated from it. Although excitons are generated by light absorption in all the PDI clusters, we unambiguously proved that only the ones which are in physical contact with P3HT exhibit an appreciable charge transfer because of the existence of a complementary electron donor phase. Such a direct observation is novel and of general applicability and can also be extended to other bicomponent materials for plastic photovoltaics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号